Page Header

Set up of a Microbial Fuel Cell for the Treatment of a Garden Compost Leachate: Impact of the External Polarizing Electric Resistance Upon the Chemical Oxygen Demand Removal

Imene Laaz, Mostefa Kameche, Christophe Innocent

Abstract


Microbial fuel cells (MFCs) are new and growing renewable energy devices. They transform chemical products
into electricity with the help of microorganisms (enzymes, bacteria, microbes, etc.) acting as biocatalysts. They
are nowadays displaying technological development since they concomitant simultaneously the wastewater
treatment and the electric power generation. These two novelties incite researchers in the field, the utilization of
this promising technology. As a matter of fact, a bioelectrochemical fuel cell has been elaborated and set up for
garden compost leachate treatment. Following a previous study on the microbial anode formed from wastewater
under the application of an electric potential either positive or negative by using chronoamperometry. In this work, we propose the simple method of connecting the two electrodes (anode and cathode) by electrical resistance, to flow a current. The impact of the polarizing electric load on the achievement of the MFC has therefore been studied. Moreover, the chemical oxygen demand (COD) removal for the MFC running for 7 days has been also investigated. It decreased and showed simultaneously an increase in the cell voltage. Thus, the effects of the external load on the current and power generation, as well as on pollutant removal, have been studied by modifying each time the external load. The external polarizing resistance (EPR) was increased from 1 to 10 kΩ, to assess the pollutant decay of the organic matter contained in the wastes. As a result of this, the voltage was increased, whilst the current was decreased, with increasing values of the EPR. The results have been discussed with respect to the type and the predominant microorganisms (electrogenic/fermentative) being involved during the generation of the electric current. This new technology is very promising for converting waste into electricity by offering a way to clean up the polluted environment.


Keywords



[1] B. Sebastien, “Etude expérimentale d'une cellule d'électrolyseur à membrane échangeuse de protons (PEMWE): Contribution à l'optimisation d'une pile à combustible réversible, pour le stockage d'énergie solaire,” Ph.D. dissertation, Université de Réunion, Paris, France, 2021.

[2] M. Behera, P. S. Jana, T. T. More, and M. M. Ghangrekar, “Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH,” Bioelectrochemistry, vol. 79, pp. 228–233, 2010, doi: 10.1016/j.bioelechem.2010.06.002.

[3] M. Ghasemi, S. Shahgaidi, M. Ismail, Z. Yaakob, and W. R. W. Daud, “New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems,” Chemical Engineering Journal, vol. 184, pp. 82–89, 2012, doi: 10.1016/j.cej.2012.01.001.

[4] U. R. Beegle and A. P. Borole, “Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors,” Renewable and Sustainable Energy Reviews, vol. 96, pp. 343–351, 2018, doi: 10.1016/j.rser. 2018.07.057.

[5] L. Huang and B. E. Logan, “Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell,” Applied Microbiology and Biotechnology, vol. 80, no. 2, pp. 349–355, 2008, doi: 10.1007/s00253-008-1546-7.

[6] N. Touch, T. Hibino, S. Yamaji, and H. Takata, “Nutrient salt removal by steel-making slag in sediment microbial fuel cells,” Environmental Technology, vol. 40, no. 22, pp. 2906–2912, 2019, doi: 10.1080/09593330.2018.1457724.

[7] O. Guadarrama-Pérez, K. Y. Bahena-Rabadan, U. Dehesa-Carrasco, V. H. G. Pérez, and E. B. Estrada-Arriaga, “Bioelectricity production using shade macrophytes in constructed wetlands-microbial fuel cells,“ Environmental Technology, vol. 43, no. 10, pp. 1532–1543, 2022, doi: 10.1080/09593330.2020.1841306.

[8] C. Santoro, C. Arbizzani, B. Erable, and I. Ieropoulos, “Microbial fuel cells: From fundamentals to applications. A review,” Journal of Power Sources, vol. 356, pp. 225–244, 2017, doi: 10.1016/j.jpowsour. 2017.03.109.

[9] A. Zerrouki, M. J. Salar-García, V. M. Ortiz-Martínez, S. Guendouz, H. Ilikti, A. P. de Los Ríos, F. J. Hernández-Fernández, and M. Kameche, “Synthesis of low cost organometallic-type catalysts for their application in microbial fuel cell technology,” Environmental Technology, vol. 40, no. 18, pp. 2425–2435, 2019, doi: 10.1080/09593330.2018.1442502.

[10] M. Shabani, H.Younesi, M. Pontié, A. Rahimpour, M. Rahimnejad, and A. A. Zinatizadeh,“A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery,” Journal of cleaner production, vol. 264, no. 10, 2020, Art. no. 121446, doi: 10.1016/J.JCLEPRO.2020.121446.

[11] A. S. Mathuriya and J. V. Yakhmi, “Microbial fuel cells – Applications for generation of electrical power and beyond,” Critical Reviews in Microbiology, vol. 42, pp. 127–143, 2016, doi: 10.3109/1040841X.2014.905513.

[12] L. Washington, P. Mario, U. Gladys, K. Abudukeremu, E. Magdy, R. Celso, and R. Gábor, “Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater,” Chemosphere, vol. 176, pp. 378–388, 2017, doi: 10.1016/j.chemosphere. 2017.02.099.

[13] B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey, “Microbial fuel cells: Methodology and technology,” Environmental Science & Technology, vol. 40, pp. 5181–5192, 2006, doi: 10.1021/es0605016.

[14] P. Clauwaert, P. Aelterman, T. H. Pham, L. De Schamphelaire, M. Carballa, K. Rabaey, and W. Verstraete, “Minimizing losses in bioelectrochemical systems: The road to applications,” Applied Microbiology and Biotechnology, vol. 79, pp. 901–913, 2008, doi: 10.1007/s00253- 008-1522-2.

[15] J. M. Kamau, D. N. Mbui, J. M. Mwaniki, F. B. Mwaura, and G. N. Kamau, “Microbial fuel cells: Influence of external resistors on power, current and power densityn,” Journal of Thermodynamics & Catalysis, vol. 8, no. 1, p. 182, 2017, doi: 10.4172/2157-7544.1000182.

[16] D. Y. Lyon, F. Buret, T. M. Vogel, and J. M. Monier,” Is resistance futile? Changing external resistance does not improve microbial fuel cell performance,” Bioelectrochemistry, vol. 78, pp. 2–7, 2010, doi: 10.1016/j.bioelechem.2009.09.001.

[17] K. P. Katuri, K. Scott, I. M. Head, C. Picioreanu, and T. P. Curtis, “Microbial fuel cells meet with external resistance,” Bioresource Technology, vol. 102, pp. 2758–2766, 2011, doi: 10.1016/j. biortech.2010.10.147.

[18] L. Kook, N. Nemestothy, K. Belafi-Bako, and P. Bakonyi, “Investigating the specific role of external load on the performance versus stability trade-off in microbial fuel cells,” Bioresource Technology, vol. 309, 2020, Art. no. 123313, doi: 10.1016/j.biortech.2020.123313.

[19] S. F. Ketep, A. Bergel, M. Bertrand, W. Achouak, and E. Fourest, “Sampling location of the inoculum is crucial in designing anodes for microbial fuel cells,” Biochemical Engineering Journal, vol. 73, pp. 12–16, 2013, doi: 10.1016/j. bej.2013.01.001.

[20] H. Kebaili, M. Kameche, C. Innocent, A. Benayyad, W. E. Kosimaningrum, and T. Sahraoui, “Scratching and transplanting of electro-active biofilm in fruit peeling leachate by ultrasound: Re-inoculation in new microbial fuel cell for enhancement of bioenergy production and organic matter detection,” Biotechnology Letters, vol. 42, no. 6, pp. 965– 978, 2020, doi: 10.1007/s10529-020-02858-5.

[21] A. Gonzalez del Campo, F. J. Fernandez, P. Canizares, M. A. Rodrigo, F. J. Pinar, and J. Lobato, “Energy recovery of biogas from juice wastewater through a short high temperature PEMFC stack,” International Journal of Hydrogen Energy, vol. 39, pp. 6937–6943, 2014, doi: 10.1016/j.ijhydene.2014.02.119.

[22] P. Szymon, L. F. Luis Fernando, N. Janusz, K. Dariusz, and F. M. Francisco.Jesus, “The influence of external load on the performance of microbial fuel cells,” Energies, vol. 14, p. 612, 2021, doi: 10.3390/en14030612.

[23] Determination of Chemical Oxygen Demand, NFT 90-101, 1988.

[24] F. Ketep, “Microbial fuel cells for the production of electricity coupled with the treatment of water in the paper industry,” Ph.D. dissertation, Grenoble University France, 2012.

[25] K. P. Katuri, K. Scott, I. M. Head, C. Picioreanu, and T. P. Curtis, “Microbial fuel cells meet with external resistance,” Bioresource Technology, vol. 102, pp. 2758–2766, 2011, doi: 10.1016/j. biortech.2010.10.147.

[26] R. P. Pinto, B. Srinivasan, M. F. Manuel, and B. Tartakovsky, “A two-population bio electrochemical model of a microbial fuel cell,” Bioresource Technology, vol. 101, pp. 5256– 5265, 2010, doi: 10.1016/j.biortech.2010.01.122.

[27] L. Zhang, X. Zhu, J. Li, Q. Liao, and D. Ye, “Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances,” Journal of Power Sources, vol. 196, pp. 6029–6035, 2011, doi: 10.1016/j. jpowsour.2011.04.013.

[28] S. Jung and J. M. Regan, “ Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells,” Applied and Environmental Microbiology, vol. 77, no. 2, pp. 564–571, 2011, doi: 10.1128/AEM.01392-10.

[29] M. Ouis, M. Kameche, C. Innocent, M. Charef, and H. Kebaili, ”Electro-polymerization of pyrrole on graphite electrode: Enhancement of electron transfer in bio-anode of microbial fuel cell,” Polymer Bulletin, vol. 75, pp. 669–684, 2018, doi: 10.1007/s00289-017-2048-5.

[30] A. Zerrouki, M. Kameche, H. Kebaili, I. S. Boukoussa, M. A. Flitti, H. Ilikti, and C. Innocent, “An investigation on polymer ion exchange membranes used as separators in low energy microbial fuel cells,” Polymer Bulletin, vol. 75, no. 11, pp. 4947–4965, 2018, doi: 10.1007/ s00289-018-2305-2.

[31] S. Potrykus, L. F. León-Fernández, J. Nieznański, D. Karkosiński, and F. J. Fernandez-Morales, “The influence of external load on the performance of microbial fuel cells,” Energies, vol. 14, no. 3, p. 612, 2021, doi: 10.3390/en 14030612.

[32] A. González del Campo, P. Cañizares, J. Lobato, M. Rodrigo, and F. J. Fernandez Morales, “Effects of external resistance on microbial fuel cell’s performance,” in Environment, Energy and Climate Change II. Chem: Springer, 2014, pp. 175–197.

[33] G. S. Jadhav and M. M. Ghangrekar, “Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration,” Bioresource Technology, vol. 100, pp. 717–723, 2009, doi: 10.1016/j.biortech. 2008.07.041.

[34] C. Picioreanu, I. M. Head, K. P. Katuri, M. C. M. V. Loosdrecht, and K. Scott, “A computational model for biofilm-based microbial fuel cells,” Water Research, vol. 41, pp. 2921–2940, 2007, doi: 10.1016/j.watres.2007.04.009.

Full Text: PDF

DOI: 10.14416/j.asep.2023.05.005

Refbacks

  • There are currently no refbacks.