Page Header

Advantages and Significance of Acid and Alkali Pretreatment of Lignocellulose Biomass in Biorefining Process

Baranitharan Paramasivam, Richard Q. Mensah, Malinee Sriariyanun

Abstract


-

[1] S. G. Azevedo, T. Sequeira, M. Santos, and L. Mendes, “Biomass-related sustainability: A review of the literature and interpretive structural modeling,” Energy, vol. 171, pp. 1107–1125, 2019, doi: 10.1016/j.energy.2019.01.068.

[2] A. I. Osman, M. Farghali, I. Ihara, A. M. Elgarahy, A. Ayyad, N. Mehta, K. H. Ng, E. M. Abd, A. S. Eltaweil, M. Hosny, and S. M. Hamed, “Materials, fuels, upgrading, economy, and life cycle assessment of the pyrolysis of algal and lignocellulosic biomass: A review,” Environmental Chemistry Letters, pp. 1–58, 2023, doi: 10.1007/ s10311-023-01573-7.

[3] R. Kumar, V. Strezov, H. Weldekidan, J. He, S. Singh, T. Kan, and B. Dastjerdi, “Ligno cellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels,” Renewable and Sustainable Energy Reviews, vol. 123, 2023, Art. no. 109763, doi: 10.1016/j.rser.2020.109763.

[4] S. Areeya, E. J. Panakkal, M. Sriariyanun, T. Kangsadan, A. Tawai, S. Amornraksa, U. W. Hartley, and P. Yasurin, “A review on chemical pretreatment of lignocellulose biomass for the production of bioproducts: Mechanisms and applications,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6767, doi: 10.14416/j.asep.2022.08.001.

[5] V. Phakeenuya and N. Kitiborwornkul, “Recent progress in biorefining process for production of biofuels, biochemicals and biomaterials from lignocellulosic biomass,” The Journal of KMUTNB, vol. 34, no. 4, 2024, doi: 10.14416/j. kmutnb.2023.03.002 (in Thai).

[6] A. Abraham, A. K. Mathew, H. Park, O. Choi, R. Sindhu, B. Parameswaran, A. Pandey, J. H. Park, and B. L. Sang, “Pretreatment strategies for enhanced biogas production from lignocellulosic biomass,” Bioresource Technology, vol. 301, 2020, Art. no. 122725, doi: 10.1016/j.biortech. 2019.122725.

[7] Z. E. Zadeh, A. Abdulkhani, O. Aboelazayem, and B. Saha “Recent insights into lignocellulosic biomass pyrolysis: A critical review on pretreatment characterization and products upgrading,” Processes, vol. 8, no. 7, 2020, Art. no. 799, doi: 10.3390/pr8070799.

[8] Y. S. Cheng, P. Mutrakulcharoen, S. Chuetor, K. Cheenkachorn, P. Tantayotai, E. J. Panakkal, and M. Sriariyanun, “Recent situation and progress in biorefining process of lignocellulosic biomass: Toward green economy,” Applied Science and Engineering Progress, vol. 13, no. 4, pp. 299– 311, doi: 10.14416/j.asep.2020.08.002.

[9] T. Ruensodsai and M. Sriariyanun, “Sustainable development and progress of lignocellulose conversion to platform chemicals,” The Journal of KMUTNB, vol. 32, no. 4, pp. 815–818, 2022, doi: 10.14416/j.kmutnb.2022.03.001.

[10] S. Baksi, D. Saha, S. Saha, U. Sarkar, D. Basu, and J. C. Kuniyal, “Pre-treatment of lignocellulosic biomass: Review of various physico-chemical and biological methods influencing the extent of biomass depolymerization,” International Journal of Environmental Science and Technology, pp. 1–28, 2023, doi: 10.1007/s13762-023-04838-4.

[11] D. Elalami and A. Barakat, “State of the art of energy production from agricultural residues using thermochemical and biological processes,” in Clean Energy and Resources Recovery. Amsterdam, Netherlands: Elsevier, 2021, doi: 10.1016/B978-0-323-85223-4.00008-7.

[12] Z. Youcai and Z. Guangyin, Pollution Control and Resource Recovery: Sewage Sludge. Oxford, UK: Butterworth-Heinemann, 2016.

[13] T. C. Yang, J. Kumaran, S. Amartey, M. Maki, X. Li, F. Lu, and W. Qin, “Biofuels and bioproducts produced through microbial conversion of biomass,” Bioenergy Research: Advances and Applications, pp. 71–93, 2014, doi. 10.1016/ B978-0-444-59561-4.00005-X.

[14] D. Jose, N. Kitiborwornkul, K. Katam, and M. Sriariyanun, “A review on chemical pretreatment methods of lignocellulosic biomass: recent advances and progress,” Applied Science and Engineering Progress, vol. 15, no. 4, 2022, Art. no. 6210, doi: 10.14416/j.asep.2022.08.001.

[15] J. U. Hernández-Beltrán, I. O. Hernández-De Lira, M. M. Cruz-Santos, A. Saucedo-Luevanos, F. Hernández-Terán, and N. Balagurusamy, “Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: Current state, challenges, and opportunities,” Applied Sciences, vol. 9, no. 18, 2019, Art. no. 3721, doi: 10.3390/ app9183721.

[16] A. A. Shah, T. H. Seehar, K. Sharma, and S. S. Toor, “Biomass pretreatment technologies,” in Hydrocarbon Biorefinery. Amsterdam, Netherlands: Elsevier, 2022, pp. 203–228, doi: 10.1016/B978-0-12-823306-1.00014-5.

[17] R. Sakthivel, G. V. Harshini, M. S. Vardhan, A. Vinod, and K. Gomathi, “Biomass energy conversion through pyrolysis: A ray of hope for the current energy crisis,” in Green Energy Systems. Amsterdam, Netherlands: Elsevier, 2023, pp. 37–68, , doi: 10.1016/B978-0-323- 95108-1.00006-9.

[18] S. Behera, R. Arora, N. Nandhagopal, and S. Kumar, “Importance of chemical pretreatment for bioconversion of lignocellulosic biomass,” Renewable and Sustainable Energy Reviews, vol. 1, no. 36, pp. 91–106, 2014, doi: 10.1016/j. rser.2014.04.047.

[19] E. Tomás-Pejó, P. Alvira, M. Ballesteros, M. J. Negro, “Pretreatment technologies for lignocellulose-to-bioethanol conversion,” in Biofuels. Amsterdam, Netherlands: Elsevier, 2011, pp. 149–176, doi: 10.1016/B978-0-12- 385099-7.00007-3.

[20] M. A. Kassim, T. K. Meng, R. Kamaludin, A. H. Hussain, and N. A. Bukhari, “Bioprocessing of sustainable renewable biomass for bioethanol production,” in Value-Chain of Biofuels. Amsterdam, Netherlands: Elsevier, 2022, pp. 195–234, doi: 10.1016/B978-0-12-824388- 6.00004-X.

[21] I. Syaichurrozi, P. K. Villta, N. Nabilah, and R. Rusdi, “Effect of sulfuric acid pretreatment on biogas production from Salvinia molesta,” Journal of Environmental Chemical Engineering, vol. 7, no. 1, 2019, Art. no. 102857, doi: 10.1016/j.jece.2018.102857.

[22] S. Sarto, R. Hildayati, and I. Syaichurrozi, “Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics,” Renewable Energy, vol. 132, pp. 335– 350, 2019, doi: 10.1016/j.renene.2018.07.121.

Full Text: PDF

DOI: 10.14416/j.asep.2023.05.004

Refbacks

  • There are currently no refbacks.