Page Header

Advancing the Performance of Ceramic - Reinforced Aluminum Hybrid Composites: A Comprehensive Review and Future Perspectives

Sharath Ballupete Nagaraju, Madhu Puttegowda, Madhu Kodigarahalli Somashekara, Yashas Gowda Thyavihalli Girijappa, Pradeep Dyavappanakoppalu Govindaswamy, Karthik Sathyanarayana


Hybrid composites comprising aluminum reinforced with ceramics have surfaced as a potential class of materials that exhibit improved mechanical and thermal characteristics. These composites have a diverse range of applications across multiple industries. The present study offers a thorough examination of recent scholarly investigations pertaining to such composites, with particular emphasis on their mechanical performance, thermal attributes, and interfacial characteristics. This paper offers an extensive evaluation of ceramic-reinforced aluminum composites, along with a discussion of potential solutions and prospects for addressing the existing limitations and challenges. This review explores emerging areas of research, encompassing interface engineering methodologies, sophisticated processing techniques, and the incorporation of innovative reinforcement substances. The present recommendations are geared towards augmenting the efficacy, dependability, and durability of hybrid composites comprising ceramic and aluminum reinforcements.


[1] H. R. Kotadia, G. Gibbons, A. Das, and P. D. Howes, “A review of laser powder bed fusion additive manufacturing of aluminium alloys: Microstructure and properties,” Additive Manufacturing, vol. 46, Oct. 2021, Art. no. 102155, doi: 10.1016/j.addma. 2021.102155.


[2] N. T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague, “3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting,” Progress in Materials Science, vol. 106, Dec. 2019, Art. no. 100578, doi: 10.1016/j.pmatsci.2019. 100578.


[3] A. A. Adebisi, M. A. Maleque, and M. M. Rahman, “Metal matrix composite brake rotor: Historical development and product life cycle analysis,” International Journal of Automotive and Mechanical Engineering, vol. 4, pp. 471–480, Dec. 2011, doi: 10.15282/ijame.4.2011.8.0038.


[4] R. Dasgupta and H. Meenai, “SiC particulate dispersed composites of an Al–Zn–Mg–Cu alloy: Property comparison with parent alloy,” Materials Characterization, vol. 54, no. 45, pp. 438–445, May 2005, doi: 10.1016/j.matchar. 2005.01.012.


[5] M. B. Patil, S. B. Rajamani, S. N. Mathad, A. Y. Patil, M. A. Hussain, H. S. Alorfii, A. Khan, A. M. Asiri, I. Khan, and M. Puttegowda, “Microwave-assisted synthesis of poly (acrylamide-co-2-hydroxyethyl methacrylate)/chitosan semi-IPN ZnO nanocomposite membranes for food packaging applications,” Journal of Materials Research and Technology, vol. 20, pp. 3537–3548, Sep. 2022, doi: 10.1016/j.jmrt. 2022.08.079.


[6] A. Radha and K. R. Vijayakumar, “An investigation of mechanical and wear properties of AA6061 reinforced with silicon carbide and graphene nano particles-particulate composites,” Materials Today: Proceedings, vol. 3, no. 6, pp. 2247–2253, Jan. 2016, doi: 10.1016/j.matpr.2016.04.133.


[7] M. K. Surappa, “Aluminium matrix composites: Challenges and opportunities,” Sadhana, vol. 28, pp. 319–334, Feb. 2003, doi: 10.1007/BF02717141.


[8] L. J. Huang, L. Geng, and H. X. Peng, “Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal?,” Progress in Materials Science, vol. 71, pp. 93–168, Jun. 2015, doi: 10.1016/j.pmatsci. 2015.01.002.


[9] A. Sankhla and K. M. Patel, “Metal matrix composites fabricated by stir casting process-a review,” Advances in Materials and Processing Technologies, vol. 8, no. 2, pp. 1270–1291, Apr. 2022, doi: 10.1080/2374068X.2020.1855404.


[10] B. N. Sharath, C. V. Venkatesh, A. Afzal, N. Aslfattahi, A. Aabid, M. Baig, and B. Saleh, “Multi ceramic particles inclusion in the aluminium matrix and wear characterization through experimental and response surface-artificial neural networks,” Materials, vol. 14, no. 11, pp. 1–24, May 2021, doi: 10.3390/ma 14112895.


[11] B. N. Sharath, K. S. Madhu, and C. V. Venkatesh, “Experimental study on dry sliding wear behaviour of Al- B4C-Gr metal matrix composite at different temperatures,” Applied Mechanics and Materials, vol. 895, pp. 96–101, Dec. 2019, doi: 10.4028/


[12] M. B. Pasha and M. Kaleemulla, “Processing and characterization of aluminum metal matrix composites: an overview,” Reviews on Advanced Materials Science, vol. 56, no. 1, pp. 79–90, May 2018, doi: 10.1515/rams-2018-0039.


[13] A. Mallick, S. G. Setti and R. K. Sahu, “Centrifugally cast functionally graded materials: Fabrication and challenges for probable automotive cylinder liner application,” Ceramics International, vol. 49, pp. 8649–8682, Mar. 2023, doi: 10.1016/ j.ceramint.2022.12.148.


[14] B. N. Sharath and C. V. Venkatesh, “Study on Effect of boron carbide, aluminium oxide and graphite on dry sliding wear behaviour of aluminium based metal matrix composite at different temperature,” Tribologia-Finnish Journal of Tribology, vol. 38, no. 1–2, pp. 35–46, Jun. 2021, doi: 10.30678/fjt.99931.


[15] C. O. Ujah and D. V. Kallon, “Trends in aluminium matrix composite development,” Crystals, vol. 12, no. 10, pp. 1–27, Sep. 2022, doi: 10.3390/cryst12101357.


[16] K. C. Mohanakumara, H. Rajashekar, S. Ghanaraja, and S. L. Ajitprasad, “Development and mechanical properties of SiC reinforced cast and extruded Al based metal matrix composite,” Procedia Materials Science, vol. 5, pp. 934–943, Jan. 2014, doi: 10.1016/j.mspro.2014.07.381.


[17] R. Manjunath, D. Kumar, and A. Kumar, “A review on the significance of hybrid particulate reinforcements on the mechanical and tribological properties of stir-casted aluminum metal matrix composites,” Journal of Bio-and Tribo-Corrosion, vol. 7, no. 3, pp. 1–11, Sep. 2021, doi: 10.1007/s40735-021-00558-9.


[18] D. Bandhu, A. Thakur, R. Purohit, R. K. Verma, and K. Abhishek, “Characterization & evaluation of Al7075 MMCs reinforced with ceramic particulates and influence of age hardening on their tensile behavior,” Journal of Mechanical Science and Technology, vol. 32, pp. 3123–3128, Jul. 2018, doi: 10.1007/s12206-018-0615-9.


[19] R. S. Harish, M. S. Reddy, and J. Kumaraswamy, “Mechanical behaviour of Al7075 alloy Al2O3/ E-Glass hybrid composites for automobile applications,” Materials Today: Proceedings, vol. 72, pp. 2186–2192, Jan. 2023, doi: 10.1016/ j.matpr.2022.08.460.


[20] B. N. Sharath, C. V. Venkatesh, A. Afzal, M. A. Baig and A. P. Kumar, “Study on effect of ceramics on dry sliding wear behaviour of Al- Cu-Mg based metal matrix composite at different temperature,” Materials Today: Proceedings, vol. 46, pp. 8723–8733, Jan. 2021, doi: 10.1016/ j.matpr.2021.04.034.


[21] K. S. Madhu, C. V. Venkatesh, B. N. Sharath, and S. Karthik, “Effect of boron carbide on wear resistance of graphite containing Al7029 based hybrid composites and its dry sliding wear characterization through experimental, response surface method and ANOVA,” Tribologia- Finnish Journal of Tribology, vol. 38, no. 3–4, pp. 48–60, Dec. 2021, doi: 10.30678/fjt.111905.


[22] O. O. Ayodele, B. J. Babalola, and P. A. Olubambi, “Characterization, nanomechanical, and wear attributes of sintered Al-TiB2 composites,” Journal of Materials Research and Technology, vol. 24, pp. 4153–4167, May 2023, doi: 10.1016/ j.jmrt.2023.04.060.


[23] D. A. Ashebir, G. A. Mengesha, and D. K. Sinha, “An insight into mechanical and metallurgical behavior of hybrid reinforced aluminum metal matrix composite,” Advances in Materials Science and Engineering, vol. 2022, Oct. 2022, Art. no. 7843981, doi: 10.1155/2022/7843981.


[24] O. Gohardani, M. C. Elola, and C. Elizetxea, “Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences,” Progress in Aerospace Sciences, vol. 70, pp. 42–68, Oct. 2014, doi: 10.1016/j.paerosci.2014.05.002.


[25] P. Cataldi, A. Athanassiou, and I. S. Bayer, “Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications,” Applied Sciences, vol. 8, no. 9, Aug. 2018, Art. no. 1438, doi: 10.3390/app8091438.


[26] Y. Jang, S. M. Kim, G. M. Spinks, and S. J. Kim, “Carbon nanotube yarn for fiber‐shaped electrical sensors, actuators, and energy storage for smart systems,” Advanced Materials, vol. 32, no. 5, Feb. 2020, Art. no. 1902670, doi: 10.1002/ adma.201902670.


[27] S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Materials Science and Engineering: R: Reports, vol. 74, no. 10, pp. 281–350, Oct. 2013, doi: 10.1016/j.mser.2013.08.001.


[28] X. Zhang, T. Chen, S. Ma, H. Qin, and J. Ma, “Overcoming the strength-ductility trade-off of an aluminum matrix composite by novel core-shell structured reinforcing particulates,” Composites Part B: Engineering, vol. 206, Feb. 2021, Art. no. 108541, doi: 10.1016/ j.compositesb.2020.108541.


[29] P. Samal, P. R. Vundavilli, A. Meher, and M. M. Mahapatra, “Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties,” Journal of Manufacturing Processes, vol. 59, pp. 131–152, Nov. 2020, doi: 10.1016/j.jmapro.2020.09.010.


[30] P. Bharathi and T. S. Kumar, “Mechanical characteristics and wear behaviour of Al/SiC and Al/SiC/B4C hybrid metal matrix composites fabricated through powder metallurgy route,” Silicon, vol. 22, pp. 1–7, Feb. 2023, doi: 10.1007/ s12633-023-02347-0.


[31] V. B. Nathan, R. Soundararajan, C. B. Abraham, E. Vinoth, and J. K. Narayanan, “Study of mechanical and metallurgical characterization of correlated aluminium hybrid metal matrix composites,” Materials Today: Proceedings, vol. 45, pp. 1237–1245, Jan. 2021, doi: 10.1016/ j.matpr.2020.04.643.


[32] G. Mahajan, N. Karve, U. Patil, P. Kuppan, and K. Venkatesan, “Analysis of microstructure, hardness and wear of Al-SiC-TiB₂ hybrid metal matrix composite,” Indian Journal of Science and Technology, vol. 8, no. 2, pp. 101–105, Jan. 2015, doi: 10.17485/ijst/2015/v8iS2/59081.


[33] V. Mohanavel and M. Ravichandran, “Experimental investigation on mechanical properties of AA7075-AlN composites,” Materials Testing, vol. 61, no. 6, pp. 554–558, Jun. 2019, doi: 10.3139/120.111354.


[34] S. Arulvel, D. M. Reddy, D. D. Rufuss, and T. Akinaga, “A comprehensive review on mechanical and surface characteristics of composites reinforced with coated fibres,” Surfaces and Interfaces, vol. 27, Dec. 2021, Art. no. 101449, doi: 10.1016/j.surfin.2021.101449.


[35] M. Schöbel, W. Altendorfer, H. P. Degischer, S. Vaucher, T. Buslaps, M. Di Michiel, and M. J. Hofmann, “Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications,” Composites Science and Technology, vol. 71, no. 5, pp. 724–733, Mar. 2011, doi: 10.1016/j.compscitech.2011.01.020.


[36] P. Ashwath and M. A. Xavior, “Processing methods and property evaluation of Al2O3 and SiC reinforced metal matrix composites based on aluminium 2xxx alloys,” Journal of Materials Research, vol. 31, no. 9, pp. 1201–1219, May 2016, doi: 10.1557/jmr.2016.131.


[37] A. Rezaie, W. G. Fahrenholtz, and G. E. Hilmas, “Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2-SiC,” Journal of Materials Science, vol. 42, pp. 2735–2744, Apr. 2007, doi: 10.1007/s10853- 006-1274-2.


[38] A. Indurkar, R. Choudhary, K. Rubenis, and J. Locs, “Advances in sintering techniques for calcium phosphates ceramics,” Materials, vol. 14, no. 20, pp. 1–18, Oct. 2021, doi: 10.3390/ ma14206133.


[39] M. Valant, D. Suvorov, R. C. Pullar, K. Sarma, and N. M. Alford, “A mechanism for low-temperature sintering,” Journal of the European Ceramic Society, vol. 26, no. 13, pp. 2777–2783, Jan. 2006, doi: 10.1016/j.jeurceramsoc.2005.06.02.


[40] E. A. Olevsky, V. Tikare, and T. Garino, “Multi‐scale study of sintering: A review,” Journal of the American Ceramic Society, vol. 89, no. 6, pp. 1914–1922, Jun. 2006, doi: 10.1111/j.1551- 2916.2006.01054.x.


[41] O. Guillon, J. Gonzalez‐Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, “Field‐assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments,” Advanced Engineering Materials, vol. 16, no. 7, pp. 830–849, Jul. 2014, doi: 10.1002/adem.201300409.


[42] Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, “Spark plasma sintering of alumina,” Journal of the American Ceramic Society, vol. 85, no. 8, pp. 1921–1927, Aug. 2002, doi: 10.1111/j.1151- 2916.2002.tb00381.x.


[43] C. Suryanarayana, “Mechanical alloying and milling,” Progress in Materials Science, vol. 46, no. 1–2, pp. 1–84, Jan. 2001, doi: 10.1016/ S0079-6425(99)00010-9.


[44] C. Suryanarayana, E. Ivanov, and V. V. Boldyrev, “The science and technology of mechanical alloying,” Materials Science and Engineering: A, vol. 304, pp. 151–158, May 2001, doi: 10.1016/ S0921-5093(00)01465-9.


[45] S. Sivasankaran, H. R. Ammar, B. Almangour, S. A. Elborolosy, A. B. Mekky, and A. S. Alaboodi, “Influence of milling time and ball-to-powder ratio on mechanical behavior of FeMn30Cu5 biodegradable alloys prepared by mechanical alloying and hot-forging,” Crystals, vol. 12, no. 12, pp. 1–19, Dec. 2022, doi: 10.3390/cryst12121777.


[46] V. Sharma, U. Prakash, and B. M. Kumar, “Surface composites by friction stir processing: A review,” Journal of Materials Processing Technology, vol. 224, pp. 117–134, Oct. 2015, doi: 10.1016/j.jmatprotec.2015.04.019.


[47] M. S. Węglowski and S. Dymek, “Relationship between friction stir processing parameters and torque, temperature and the penetration depth of the tool,” Archives of Civil and Mechanical Engineering, vol. 13, no. 2, pp. 186–191, Jun. 2013, doi: 10.1016/j.acme.2013.01.003.


[48] T. R. Vijayaram, S. Sulaiman, A. M. Hamouda, and M. H. Ahmad, “Fabrication of fiber reinforced metal matrix composites by squeeze casting technology,” Journal of Materials Processing Technology, vol. 178, no. 1–3, pp. 34–38, Sep. 2006, doi: 10.1016/j.jmatprotec.2005.09.026.


[49] K. Zhang, H. W. Jang, and Q. Van Le, “Production methods of ceramic-reinforced Al-Li matrix composites: A review,” Journal of Composites and Compounds, vol. 2, no. 3, pp. 77–84, Jun. 2020, doi: 10.29252/jcc.2.2.3.


[50] S. Akhtar, M. Saad, M. R. Misbah, and M. C. Sati, “Recent advancements in powder metallurgy: A review,” Materials Today: Proceedings, vol. 5, no. 9, pp. 18649–18655, Jan. 2018, doi: 10.1016/j.matpr.2018.06.210.


[51] A. Hamweendo, T. Malama, and I. Botef, “Titanium-nickel alloys for bone tissue engineering application via cold spray,” in International Conference on Competitive Manufacturing COMA16 2016, pp. 273–279, 2016.


[52] S. Mondal, P. Mondal, and D. P. Mishra, “Research progress on ceramic nanomaterials reinforced aluminum matrix nanocomposites,” Materials Science and Technology, pp. 1–7, Apr. 2023, doi: 10.1080/02670836.2023.2187153.


[53] R. Stonys, P. Loboda, I. Bogomol, V. Antonovič, and A. Kudžma, “Effect of nano additive on physical and mechanical properties of refractory composite,” in 7th International Materials Science Conference HighMatTech-2021, p. 27, 2021.


[54] M. Nagaral, R. G. Deshapande, V. Auradi, S. B. Boppana, S. Dayanand, and M. R. Anilkumar, “Mechanical and wear characterization of ceramic boron carbide-reinforced Al2024 alloy metal composites,” Journal of Bio-and Tribo-Corrosion, vol. 7, pp. 1–2, Mar. 2021, doi: 10.1007/s40735-020-00454-8.


[55] S. B. Nagaraju, M. K. Somashekara, M. Puttegowda, H. Manjulaiah, C. R. Kini, and V. C. Venkataramaiah, “Effect of B4C/Gr on hardness and wear behavior of al2618 based hybrid composites through taguchi and artificial neural network analysis,” Catalysts, vol. 12, no. 12, pp. 1–23, Dec. 2022, doi: 10.3390/catal12121654.


[56] V. S. Venkatesh and A. B. Deoghare, “Effect of boron carbide and Kaoline reinforcements on the microstructural and mechanical characteristics of aluminium hybrid metal matrix composite fabricated through powder metallurgy technique,” Advances in Materials and Processing Technologies, vol. 8, no. 2, pp. 1007–1028, Sep. 2022, doi: 10.1080/2374068X.2021.1945314.


[57] B. N. Sharath, K. S. Madhu, D. G. Pradeep, P. Madhu, B. G. Premkumar, and S. Karthik, “Effects of tertiary ceramic additives on the micro hardness and wear characteristics of Al2618+Si3N4-B4C-Gr hybrid composites for automotive applications,” Journal of Alloys and Metallurgical Systems, vol. 3, pp. 1–8, May 2023, doi: 10.1016/j.jalmes.2023.100014.


[58] O. L. Ighodaro and O. I. Okoli, “Fracture toughness enhancement for alumina systems: A review,” International Journal of Applied Ceramic Technology, vol. 5, no. 3, pp. 313–323, May 2008, doi: 10.1111/j.1744-7402.2008.02224.x.


[59] J. Liu, H. Yan and K. Jiang, “Mechanical properties of graphene platelet-reinforced alumina ceramic composites,” Ceramics International, vol. 39, no. 6, pp. 6215–6221, Aug. 2013, doi: 10.1016/ j.ceramint.2013.01.041.


[60] Y. D. Huang, N. Hort, H. Dieringa, and K. U. Kainer, “Analysis of instantaneous thermal expansion coefficient curve during thermal cycling in short fiber reinforced AlSi12CuMgNi composites,” Composites Science and Technology, vol. 65, no. 1, pp. 137–147, Jan. 2005, doi: 10.1016/j. compscitech.2004.07.002.


[61] R. Arpon, J. M. Molina, R. A. Saravanan, C. Garcia-Cordovilla, E. Louis, and J. Narciso, “Thermal expansion behaviour of aluminium/SiC composites with bimodal particle distributions,” Acta Materialia, vol. 51, no. 11, pp. 3145–3156, Jun. 2003, doi: 10.1016/S1359-6454(03)00126-5.


[62] A. Sommers, Q. Wang, X. Han, C. T'Joen, Y. Park, and A. Jacobi, “Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems-A review,” Applied Thermal Engineering, vol. 30, no. 11–12, pp. 1277–1291, Aug. 2010, doi: 10.1016/j.applthermaleng. 2010.02.018.


[63] B. Guo, M. Song, J. Yi, S. Ni, T. Shen, and Y. Du, “Improving the mechanical properties of carbon nanotubes reinforced pure aluminum matrix composites by achieving non-equilibrium interface,” Materials & Design, vol. 120, pp. 56–65, Apr. 2017, doi: 10.1016/j.matdes. 2017.01.096.


[64] E. Pagounis, M. Talvitie, and V. K. Lindroos, “Influence of the metal/ceramic interface on the microstructure and mechanical properties of HIPed iron-based composites,” Composites Science and Technology, vol. 56, no. 11, pp. 1329–1337, Jan. 1996, doi: 10.1016/S0266- 3538(96)00101-7.


[65] B. Munisamy, V. R. Madhavan, E. Chinnadurai, and J. Janardhanan, “Prediction of mechanical properties of Al6061 metal matrix composites reinforced with zircon sand and boron carbide,” Materials Testing, vol. 61, no. 6, pp. 537–542, Jun. 2019, doi: 10.3139/120.111337.


[66] B. N. Sharath, S. Karthik, D. G. Pradeep, K. S. Madhu, and C. V. Venkatesh, “Machinability studies on boron carbide and graphite reinforced Al7029-based hybrid composites,” in Materials, Design and Manufacturing for Sustainable Environment: Select Proceedings of ICMDMSE 2022, 2022, pp. 511–522.


[67] D. E. Dhas, C. Velmurugan, K. L. Wins, and K. P. B. Raja, “Effect of tungsten carbide, silicon carbide and graphite particulates on the mechanical and microstructural characteristics of AA 5052 hybrid composites,” Ceramics International, vol. 45, no. 1, pp. 614–621, Jan. 2019, doi: 10.1016/j.ceramint.2018.09.216.


[68] J. Singh and A. Chauhan, “Characterization of hybrid aluminum matrix composites for advanced applications-A review,” Journal of Materials Research and Technology, vol. 5, no. 2, pp. 159– 169, Apr. 2016, doi: 10.1016/j.jmrt.2015.05.004.


[69] S. Liu, Y. Wang, T. Muthuramalingam, and G. Anbuchezhiyan, “Effect of B4C and MOS2 reinforcement on microstructure and wear properties of aluminum hybrid composite for automotive applications,” Composites Part B: Engineering, vol. 176, pp. 1–7, Nov. 2019, doi: 10.1016/j.compositesb.2019.107329.


[70] J. Sundaram and M. Ramajayam, “Microstructure and mechanical properties of alumina and titanium Diboride containing AA2014 hybrid composites,” Journal of The Institution of Engineers (India): Series D, vol. 100, pp. 255–262, Oct. 2019, doi: 10.1007/s40033-019-00187-0.


[71] R. Chandel, N. Sharma, and S. A. Bansal, “ A review on recent developments of aluminum-based hybrid composites for automotive applications,” Emergent Materials, vol. 4, no. 5, pp. 1243–1257, Oct. 2021, doi: 10.1007/s42247- 021-00186-6.


[72] A. Mussatto, I. U. Ahad, R. T. Mousavian, Y. Delaure, and D. Brabazon, “Advanced production routes for metal matrix composites. Engineering reports,” vol. 3, no. 5, pp. 1–25, May 2021, doi: 10.1002/eng2.12330.


[73] H. Attar, S. Ehtemam-Haghighi, N. Soro, D. Kent, and M. S. Dargusch, ‘Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: Advantages, challenges and opinion for future development,” Journal of Alloys and Compounds, vol. 827, pp. 1–11, Jun. 2020, doi: 10.1016/j.jallcom.2020.154263.


[74] A. K. Sharma, R. Bhandari, A. Aherwar, R. Rimašauskienė, and C. Pinca-Bretotean, “A study of advancement in application opportunities of aluminum metal matrix composites,” Materials Today: Proceedings, vol. 26, pp. 2419–2424, Jan. 2020, doi: 10.1016/j.matpr.2020.02.516.


[75] C. H. Gireesh, K. G. D. Prasad, and K. Ramji, “Experimental investigation on mechanical properties of an Al6061 hybrid metal matrix composite,” Journal of Composites Science, vol. 2, no. 3, pp. 1–10, Aug. 2018, doi: 10.3390/ jcs2030049.


[76] K. K. Alaneme, E. A. Okotete, A. V. Fajemisin, and M. O. Bodunrin, “Applicability of metallic reinforcements for mechanical performance enhancement in metal matrix composites: A review,” Arab Journal of Basic and Applied Sciences, vol. 26, no. 1, pp. 311–330, Jan. 2019, doi: 10.1080/25765299.2019.1628689.


[77] J. Subramanian, S. Seetharaman, and M. Gupta, “Processing and properties of aluminum and magnesium-based composites containing amorphous reinforcement: A review,” Metals, vol. 5, no. 2, pp. 743–762, May 2015, doi: 10.3390/met5020743.


[78] A. W. Urquhart, “Novel reinforced ceramics and metals: A review of Lanxide's composite technologies,” Materials Science and Engineering: A, vol. 144, no. 1–2, pp. 75–82, Oct. 1991, doi: 10.1016/0921-5093(91)90211-5.


[79] A. Mazahery and M. O. Shabani, “Nano-sized silicon carbide reinforced commercial casting aluminum alloy matrix: Experimental and novel modeling evaluation,” Powder Technology, vol. 217, pp. 558–565, Feb. 2012, doi: 10.1016/ j.powtec.2011.11.020.

Full Text: PDF

DOI: 10.14416/j.asep.2023.10.001


  • There are currently no refbacks.