Page Header

Influence of Water Absorption on Mechanical and Morphological Behaviour of Roystonea-Regia/Banana Hybrid Polyester Composites

Anand Hassan Rajamudi Gowda, Govardhan Goud, Karthik Sathynarayana, Madhu Puttegowda


This study investigated the properties of hybrid composites made from Roystonea-Regia and banana fibers for potential applications in industries requiring lightweight, environmentally favorable, and mechanically strong materials. The analysis of density and void fraction revealed that the addition of banana fibers increased the composite's density, despite the fact that the actual density was slightly lower than the theoretical density due to confined gases during fabrication. The results of tensile tests revealed that water absorption negatively affected tensile strength, whereas alkali treatment and hybridization enhanced performance. The composition of 10 wt % Roystonea-Regia and 5 wt % banana had the highest tensile strength of 64.76MPa, which was attributable to the hydrophilicity and hydration content of the banana fiber. Further flexural and impact experiments confirmed that the influence of water absorption of composites showed a decrement in mechanical properties. The highest impact strength of 45.28 J/m and flexural strength of 75.6MPa were noted for 10 wt % Roystonea-Regia and 5 wt % banana. In addition, Scanning Electron Microscopy (SEM) analysis revealed that alkali treatment improved fiber-matrix interface bonding and roughened fiber surfaces, thereby enhancing the composites' overall performance. The study provides precious insights into the potential of Roystonea-Regia and banana hybrid composites for industrial applications as lightweight, environmentally friendly, and mechanically robust materials.


[1] G. Rajeshkumar, S. A. Seshadri, G. L. Devnani, M. R. Sanjay, S. Siengchin, J. P. Maran, N. A. Al-Dhabi, P. Karuppiah, V. A. Mariadhas, N. Sivarajasekar, and A. R. Anuf, “Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fibre reinforced composites–A comprehensive review,” Journal of Cleaner Production, vol. 310, 2021, Art. no. 127483.


[2] A. Karimah, M. R. Ridho, S. S. Munawar, D. S. Adi, R. Damayanti, B. Subiyanto, W. Fatriasari, and A. Fudholi, “A review on natural fibres for development of eco-friendly bio-composite: Characteristics, and utilizations,” Journal of Materials Research and Technology, vol. 13, pp. 2442–2458, 2021.


[3] S. M. Rangappa, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep, “Characterization and properties of natural fibre polymer composites: A comprehensive review,” Journal of Cleaner Production, vol. 172, pp. 566–581, 2018.


[4] M. Puttegowda, H. Pulikklaparambil, and S. M. Rangappa, “Trends and developments in natural fibre composites,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 543– 552, 2021, doi: 10.14416/j.asep.2021.06.006.


[5] G. Goud and R. N. Rao, “Mechanical and electrical performance of Roystonea regia/glass fibre reinforced epoxy hybrid composites,” Bulletin of Materials Science, vol. 35, pp. 595–599, 2012.


[6] E. Muñoz and J. A. García-Manrique, “Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites,” International Journal of Polymer Science, vol. 2015, pp. 1–10, 2015.


[7] A. Moudood, W. Hall, A. Öchsner, H. Li, A. Rahman, and G. Francucci, “Effect of moisture in flax fibres on the quality of their composites,” Journal of Natural Fibres, vol. 16, no. 2, pp. 209–224, 2019.


[8] H. M. Akil, L. W. Cheng, Z. M. Ishak, A. A. Bakar, and M. A. A. Rahman, “Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites,” Composites Science and Technology, vol. 69, no. 11–12, pp. 1942–1948, 2009.


[9] S. Sekar, S. S. Kumar, S. Vigneshwaran, and G. Velmurugan, “Evaluation of mechanical and water absorption behavior of natural fibre-reinforced hybrid biocomposites,” Journal of Natural Fibres, vol. 19, no. 5, pp. 1772–1782, 2022.


[10] A. V. R. Prasad, K. M. Rao, and G. Nagasrinivasulu, “Mechanical properties of banana empty fruit bunch fibre reinforced polyester composites,” Indian Journal of Fibre & Textile Research, vol. 34, pp. 162–167, 2009.


[11] P. Madhu, M. R. Sanjay, S. Pradeep, K. S. Bhat, B. Yogesha, and S. Siengchin, “Characterization of cellulosic fibre from Phoenix pusilla leaves as potential reinforcement for polymeric composites,” Journal of Materials Research and Technology, vol. 8, no. 3, pp. 2597–2604, 2019.


[12] T. P. Sathishkumar, P. Navaneethakrishnan, S. Shankar, and R. Rajasekar, “Characterization of new cellulose sansevieria ehrenbergii fibres for polymer composites,” Composite Interfaces, vol. 20, no. 8, pp. 575–593, 2013.


[13] S. Sanjeevi, V. Shanmugam, S. Kumar, V. Ganesan, G. Sas, D. J. Johnson, M. Shanmugam, A. Ayyanar, K. Naresh, R. E. Neisiany, and O. Das, “Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites,” Scientific Reports, vol. 11, no. 1, pp. 1–12, 2021.


[14] R. B. Alsuwait, M. Souiyah, I. Momohjimoh, S. A. Ganiyu, and A. O. Bakare, “Recent development in the processing, properties, and applications of epoxy-based natural fibre polymer biocomposites,” Polymers, vol. 15, no. 1, pp. 1–40, 2022.


[15] F. M. Khan, A. H. Shah, S. Wang, S. Mehmood, J. Wang, W. Liu, and X. Xu, “A comprehensive review on epoxy biocomposites based on natural fibres and bio-fillers: Challenges, recent developments and applications,” Advanced Fibre Materials, vol. 4, no. 4, pp. 683–704, 2022.


[16] C. Zhu, S. Li, X. Cong, C. Rudd, and X. Liu, “Effect of silane coupling agent on the properties of recycled carbon fibres reinforced bio-based epoxy composites,” Fibres and Polymers, vol. 22, no. 7, pp. 1976–1985, 2021.


[17] Y. G. T. Girijappa, S. M. Rangappa, J. Parameswaranpillai, and S. Siengchin, “Natural fibres as sustainable and renewable resource for development of eco-friendly composites: A comprehensive review,” Frontiers in Materials, vol. 6, pp. 1–14, 2019


[18] A. Subagyo and A. Chafidz, “Banana pseudo-stem fibre: Preparation, characteristics, and applications,” in Banana Nutrition. UK: IntechOpen, pp. 1–19, 2018.


[19] S. Balda, A. Sharma, N. Capalash, and P. Sharma, “Banana fibre: A natural and sustainable bioresource for eco-friendly applications,” Clean Technologies and Environmental Policy, vol. 23, pp. 1389–1401, 2021.


[20] N. Jacob and P. Prema, “Novel process for the simultaneous extraction and degumming of banana fibres under solid-state cultivation,” Brazilian Journal of Microbiology, vol. 39, pp. 115–121, 2008.


[21] D. Jose, N. Kitiborwornkul, M. Sriariyanun, and K. Keerthi, “A review on chemical pretreatment methods of lignocellulosic biomass: Recent advances and progress,” Applied Science and Engineering Progress, vol. 15, no. 4, 2022, Art. no. 6210, doi: 10.14416/j.asep.2022.08.001.


[22] P. Madhu, S. M. Rangappa, P. Senthamaraikannan, S. Pradeep, S. Siengchin, M. Jawaid, and M. Kathiresan, “Effect of various chemical treatments of Prosopis juliflora fibres as composite reinforcement: Physicochemical, thermal, mechanical, and morphological properties,” Journal of Natural Fibres, vol. 17, no. 6, pp. 833– 844, 2020.


[23] J. Jain, S. Sinha, and S. Jain, “Compendious characterization of chemically treated natural fibre from pineapple leaves for reinforcement in polymer composites,” Journal of Natural Fibres, vol. 18, no. 6, pp. 845–856, 2021.


[24] K. Muktha and B. K. Gowda, “Investigation of water absorption and fire resistance of untreated banana fibre reinforced polyester composites,” Materials Today: Proceedings, vol. 4, no. 8, pp. 8307–8312, 2017.


[25] P. Jagadeesh, V. S. H. Ningappa, M. Puttegowda, Y. G. T. Girijappa, S. M. Rangappa, M. R. Khan, I. Khan, and S. Siengchin, “Pongamia pinnata shell powder filled sisal/kevlar hybrid composites: Physicomechanical and morphological characteristics,” Polymer Composites, vol. 42, no. 9, pp. 4434–4447, 2021.


[26] L. Di Landro, A. Montalto, P. Bettini, S. Guerra, F. Montagnoli, and M. Rigamonti, “Detection of voids in carbon/epoxy laminates and their influence on mechanical properties,” Polymers and Polymer Composites, vol. 25, no. 5, pp. 371–380, 2017.


[27] L. I. U. Xueshu and C. H. E. N. Fei, “A review of void formation and its effects on the mechanical performance of carbon fiber reinforced plastic,” Engineering Transactions, vol. 64, no. 1, pp. 33–51, 2016.


[28] L. Bergonzi, M. Vettori, A. Pirondi, F. Moroni, and F. Musiari, “Numerical and experimental validation of a non-standard specimen for uniaxial tensile test,” Procedia Structural Integrity, vol. 12, pp. 392–403, 2018.


[29] D. H. Vardhan, A. Ramesh, and B. C. M. Reddy, “Effect of ceramic fillers on flexural strength of the GFRP composite material,” Materials Today: Proceedings, vol. 37, pp. 1739–1742, 2021.


[30] M. K. Chang, J. Y. Lin, Y. H. Peng, J. J. You, and Y. M. Wang, “A Study of test for Polyethylene/ modified montmorillonite nanocomposites,” Advanced Materials Research, vol. 194, pp. 1876–1879, 2011.


[31] A. Moudood, A. Rahman, H. M. Khanlou, W. Hall, A. Öchsner, and G. Francucci, “Environmental effects on the durability and the mechanical performance of flax fibre/bio-epoxy composites,” Composites Part B: Engineering, vol. 171, pp. 284–293, 2019.


[32] A. Lotfi, H. Li, D. V. Dao, and G. Prusty, “Natural fibre–reinforced composites: A review on material, manufacturing, and machinability,” Journal of Thermoplastic Composite Materials, vol. 34, no. 2, pp. 238–284, 2021.


[33] C. E. Almeida-Naranjo, V. Valle, A. Aguilar, F. Cadena, J. Kreiker, and B. Raggiotti, “Water absorption behavior of oil palm empty fruit bunch (OPEFB) and oil palm kernel shell (OPKS) as fillers in acrylic thermoplastic composites,” Materials, vol. 15, no. 14, pp. 1–17, 2022.


[34] J. Neto, H. Queiroz, R. Aguiar, R. Lima, D. Cavalcanti, and M. D. Banea, “A review of recent advances in hybrid natural fibre reinforced polymer composites,” Journal of Renewable Materials, vol. 10, no. 3, pp. 1–29, 2022.


[35] M. Muralidharan, T. P. Sathishkumar, N. Rajini, P. Navaneethakrishan, S. O. Ismail, K. Senthilkumar, S. Siengchin, F. Mohammad, and H. A. Al-Lohedan, “Ply-stacking effects on mechanical properties of Kevlar-29/ banana woven mats reinforced epoxy hybrid composites,” Journal of Industrial Textiles, vol. 52, pp. 1–31, 2022.


[36] D. Verma and K. L. Goh, “Effect of mercerization/ alkali surface treatment of natural fibres and their utilization in polymer composites: Mechanical and morphological studies,” Journal of Composites Science, vol. 5, no. 7, pp. 1–16, 2021.


[37] V. Fiore, G. Di Bella, and A. Valenza, “The effect of alkaline treatment on mechanical properties of kenaf fibres and their epoxy composites,” Composites Part B: Engineering, vol. 68, pp. 14–21, 2015.


[38] K. N. Bharath, M. Puttegowda, T. G. Yashas Gowda, G. R. Arpitha, S. Pradeep, S. M. Rangappa, and S. Siengchin, “Development of banana fabric incorporated polymer composites for printed circuit board application,” Biomass Conversion and Biorefinery, pp. 1–14, 2023, doi: 10.1007/ s13399-023-04249-y.


[39] F. C. Calheiros, C. S. C. Pfeifer, L. L. Brandão, C. M. Agra, and R. Y. Ballester, “Flexural properties of resin composites: Influence of specimen dimensions and storage conditions,” Dental Materials Journal, vol. 32, no. 2, pp. 228–232, 2013.


[40] M. R. Doddamani and S. M. Kulkarni, “Flexural behavior of functionally graded sandwich composite,” Finite Element Analysis. UK: IntechOpen, 2012, pp. 131–154.


[41] G. R. Arpitha, H. Mohit, P. Madhu, and A. Verma, “Effect of sugarcane bagasse and alumina reinforcements on physical, mechanical, and thermal characteristics of epoxy composites using artificial neural networks and response surface methodology,” Biomass Conversion and Biorefinery, pp.1–19, 2023, doi: 10.1007/s13399- 023-03886-7.


[42] P. Jagadeesh, M. Puttegowda, S. M. Rangappa, and S. Siengchin, “Role of polymer composites in railway sector: An overview,” Applied Science and Engineering Progress, vol. 15, no. 2, 2022, Art. no. 5745, doi: 10.14416/j.asep.2022.02.005.


[43] A. Bhat, S. Budholiya, S. A. Raj, M. T. Sultan, D. Hui, A. U. M. Shah, and S. N. Safri, “Review on nanocomposites based on aerospace applications,” Nanotechnology Reviews, vol. 10, no. 1, pp. 237–253, 2021.


[44] V. Dhand, G. Mittal, K. Y. Rhee, S. J. Park, and D. Hui, “A short review on basalt fibre reinforced polymer composites,” Composites Part B: Engineering, vol. 73, pp. 166–180, 2015.


[45] A. Hasan, M. S. Rabbi, and M. M. Billah, “Making the lignocellulosic fibres chemically compatible for composite: A comprehensive review,” Cleaner Materials, vol. 4, pp.1–19, 2022.


[46] H. Manjulaiah, S. Dhanraj, Y. Basavegowda, L. N. Lamani, M. Puttegowda, S. M. Rangappa, and S. Siengchin, “A novel study on the development of sisal-jute fibre epoxy filler-based composites for brake pad application,” Biomass Conversion and Biorefinery, pp. 1–13, 2023, doi: 10.1007/ s13399-023-04219-4.


[47] N. A. Nasimudeen, S. Karounamourthy, J. Selvarathinam, S. M. Thiagamani, H. Pulikkalparambil, S. Krishnasamy, and C. Muthukumar, “Mechanical, absorption and swelling properties of vinyl ester based natural fibre hybrid composites,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 680– 688, 2021, doi: 10.14416/j.asep.2021.08.006.

Full Text: PDF

DOI: 10.14416/j.asep.2023.10.003


  • There are currently no refbacks.