Page Header

Extraction of Cellulose Nanocrystals and Nanofibers from Rubber Leaves and Their Impacts on Natural Rubber Properties

Wanasorn Sompol, Napassorn Chanka, Tanabadee Boonmalert, Surapich Loykulnant, Paweena Prapainainar, Anusorn Seubsai, Peerapan Dittanet

Abstract


This study aimed to chemically isolate two distinct types of nanocellulose derived from rubber leaves and investigate their use in natural rubber (NR). The cellulose nanocrystals (CNCs) were obtained through acid hydrolysis, while oxidation with 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) was used to produce cellulose nanofibers (CNFs). The CNCs exhibited rigid and rod-like structures due to the removal of amorphous regions through acid hydrolysis, whereas the CNFs retained flexible, fiber-like morphologies and high aspect ratios. Incorporating CNCs or CNFs into NR improved its tensile properties, with the rigid CNCs enhancing the mechanical properties more than the flexible CNFs. CNC addition resulted in a 40% increase in tensile strength and a 38% increase in Young's modulus of NR. However, elongation at break decreased with filler content. On the other hand, CNF addition improved the elongation at the break without compromising the tensile properties. NR with CNF addition exhibited a 25% increase in tensile strength, a 30% increase in Young's modulus, and a 20% increase in elongation at break. Additionally, the biodegradability of NR nanocomposite films containing CNCs or CNFs surpassed that of unfilled NR film. Notably, a 6-month soil burial test revealed weight losses of 35% and 40% for NR nanocomposite films with CNCs and CNFs respectively, compared to a weight loss of 25% for the unfilled NR film.


Keywords



[1] K. Cornish and S. Cherian, “Commonalities and complexities in rubber biosynthesis,” in Chemistry, Manufacture and Applications of Natural Rubber, S. Kohjiya, Y. Ikeda, Eds. Cambridge: Woodhead Publishing, pp. 23–50, 2021.

 

[2] M. R. B. Mermet-Guyennet, J. d. C. Gianfelice, H. S. Varol, M. Habibi, B. Hosseinkhani, N. Martzel, R. Sprik, M. M. Denn, A. Zaccone, and S. H. Parekh, “Size-dependent reinforcement of composite rubbers,” Polymer, vol. 73, pp. 170–173, Sep. 2015, doi: 10.1016/j.polymer.2015.07.041.

 

[3] K. J. Nagarajan, N. R. Ramanujam, M. R. Sanjay, S. Siengchin, B. Surya Rajan, K. Sathick Basha, P. Madhu, and G. R. Raghav, “A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization,” Polymer Composite, vol. 42, pp. 1588–1630, Jan. 2021, doi: 10.1002/pc.25929.

 

[4] M. E. Hoque, A. M. Rayhan, and S. I. Shaily, “Natural fiber-based green composites: Processing, properties and biomedical applications,” Applied Science Engineering Progress, vol. 14, pp. 689–718, Oct. 2021, doi: 10.14416/j.asep. 2021.09.005.

 

[5] A. A. B. Omran, A. A. B. A. Mohammed, S. M. Sapuan, R. A. Ilyas, M. R. M. Asyraf, S. S. R. Koloor, and M. Petru, “Micro- and nanocellulose in polymer composite materials: A review,” Polymers, vol. 13, no. 231, Jan. 2021, doi: 10.3390/ polym13020231.

 

[6] N. A. Azra, A. Atiqah, H. Fadhlina, M. A. Bakar, A. Jalar, R. A. Ilyas, J. Naveen, F. A. Sabaruddin, K. K. Lim, and M. Asrofi, “Oil-palm based nanocellulose reinforced thermoplastic polyurethane for plastic encapsulation of biomedical sensor devices: Water absorption, thickness swelling and density properties,” Applied Science Engineering Progress, vol. 16, Feb. 2023, Art. no. 5696, doi: 10.14416/j.asep. 2022.02.001.

 

[7] S. Singh, K. K. Gaikwad, and Y. S. Lee, “Antimicrobial and antioxidant properties of polyvinyl alcohol bio composite films containing seaweed extracted cellulose nano-crystal and basil leaves extract,” International Journal Biological Macromolecults, vol. 107, pp. 1879–1887, Feb. 2018, doi: 10.1016/j.ijbiomac. 2017.10.057.

 

[8] P. Boruah, R. Gupta, and V. Katiyar, “Fabrication of cellulose nanocrystal (CNC) from waste paper for developing antifouling and high-performance polyvinylidene fluoride (PVDF) membrane for water purification,” Carbohydrate Polymer Technologies and Applications, vol. 5, Jun. 2023, Art. no. 100309, doi: 10.1016/j.carpta.2023. 100309.

 

[9] A. Khatun, S. Sultana, Z. Islam, M. S. Kabir, M. S. Hossain, H. P. Nur, and A. M. S. Chowdhury, “Extraction of crystalline nanocellulose (CNC) from date palm mat fibers and its application in the production of nanocomposites with polyvinyl alcohol and polyvinylpyrrolidone blended films,” Results in Engineering, vol. 17, Mar. 2023, Art. no. 101031, doi: 10.1016/j.rineng.2023.101031.

 

[10] T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, “Cellulose nanofibers prepared by TEMPO-Mediated oxidation of native cellulose,” Biomacromolecules, vol. 8, pp. 2485–2491, Jul. 2007, doi: 10.1021/bm0703970.

 

[11] Z. Tang, W. Li, Z. Lin, H. Xiao, Q. Miao, L. Huang, L. Chen, and H. Wu, “TEMPO-Oxidized cellulose with high degree of oxidation,” Polymers, vol. 9, no. 421, Sep. 2017, doi: 10.3390/ polym9090421.

 

[12] L. Wang, Q. Cui, S. Pan, Y. Li, Y. Jin, H. Yang, T. Li, and Q. Zhang, “Facile isolation of cellulose nanofibers from soybean residue,” Carbohydrate Polymer Technologies and Applications, vol. 2, Dec. 2021, Art. no. 100172, doi: 10.1016/j.carpta. 2021.100172.

 

[13] J. Bras, M. L. Hassan, and C. Bruzesse, “Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites,” Industrial Crops and Products, vol. 32, pp. 627–633, Nov. 2010, doi: 10.1016/j.indcrop.2010.07.018.

 

[14] M. A. Misman and A. R. Azura, “Overview on the potential of biodegradable natural rubber latex gloves for commercialization,” Advanced Material Research, vol. 844, pp. 486–489, Nov. 2013, doi: 10.4028/www.scientific.net/AMR. 844.486.

 

[15] C. Li, F. Huang, F. Wang, X. Liang, S. Huang, and J. Gu, “Effects of partial replacement of carbon black with nanocrystalline cellulose on properties of natural rubber nanocomposites,” Journal of Polymer Engineering, vol. 38, pp. 137–146, Apr. 2018, doi: 10.1515/polyeng-2016-0382.

 

[16] G. Supanakorn, S. Taokaew, and M. Phisalaphong, “Ternary composite films of natural rubber, cellulose microfiber, and carboxymethyl cellulose for excellent mechanical properties, biodegradability and chemical resistance,” Cellulose, vol. 28, pp. 8553–8566, Jul. 2021, doi: 10.1007/s10570- 021-04082-4.

 

[17] K. Potivara and M. Phisalaphong, “Development and characterization of bacterial cellulose reinforced with natural rubber,” Materials, vol. 12, p. 2323, Jul. 2019, doi:10.3390/ma12142323.

 

[18] W. Somphol, P. Prapainainar, P. Sae-Oui, S. Loykulnant, and P. Dittanet, “Extraction of nanocellulose from dried rubber tree leaves by acid hydrolysis,” Material Science Forum, vol. 936, pp. 37–41, Oct. 2019, doi: 10.4028/www.scientific. net/MSF.936.37.

 

[19] C. Sukthawon, P. Dittanet, P. Saeoui, S. Loykulnant, and P. Prapainainar, “Electron beam irradiation crosslinked chitosan/natural rubber -latex film: Preparation and characterization,” Radiation Physics and Chemistry, vol. 177, Dec. 2020, Art. no. 109159, doi: 10.1016/j.radphyschem. 2020.109159.

 

[20] ISO for Rubber, Vulcanized or Thermoplastic- Determination of Tensile Stress-Strain Properties, ISO 37, Nov. 2017.

 

[21] ASTM standard for Standard Test Method for Rubber Property-Effect of Liquids, ASTM D471, Jun. 2021.

 

[22] K. L. A. Cimatu, T. D. Ambagaspitiya, U. I. Premadasa, N. M. Adhikari, A. Kruse, E. Robertson, S. Guan, L. Rong, R. Advincula, and B. J. Bythell, “Polymer-solvent interaction and conformational changes at a molecular level: Implication to solvent-assisted deformation and aggregation at the polymer surface,” vol. 616, pp. 221–233, Jun. 2022, doi: 10.1016/j.jcis.2022.02.006.

 

[23] I. Filipova, F. Serra, Q. Tarres, P. Mutje, and M. Delgado-Aguilar, “Oxidative treatments for cellulose nanofibers production: A comparative study between TEMPO-mediated and ammonium persulfate oxidation,” Cellulose, vol. 27, pp. 10671–10688, Mar. 2020, doi: 10.1007/ s10570-020-03089-7.

 

[24] H. Xu, J. L. Sanchez-salvador, A. Balea, A. Blanco, and C. Negro, “Optimization of reagent consumption in TEMPO-mediated oxidation of Eucalyptus cellulose to obtain cellulose nanofibers,” Cellulose, vol. 29, pp. 6611–6627, Jun. 2022, doi: 10.1007/s10570-022-04672-w.

 

[25] A. Isogai, T. Saito, and H. Fukuzumi, “TEMPO-oxidized cellulose nanofibers,” Nanoscale, vol. 3, pp. 71–85, Jan. 2011, doi: 10.1039/ C0NR00583E.

 

[26] A. Isogai and Y. Zhou, “Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals,” Current Opinion Solid State and Materials Science, vol. 23, pp. 101–106, Apr. 2019, doi: 10.1016/j.cossms.2019.01.001.

 

[27] Y. Habibi, “Key advances in the chemical modification of nanocelluloses,” Chemical Society Reviews, vol. 43, pp. 1519–1542, Mar. 2014, doi: 10.1039/C3CS60204D.

 

[28] H. C. Chen, Y. C. Huang, C. H. Wu, R. J. Jeng, and F. C. Chang, “Stable emulsion of cationic waterborne polyurethanes with cellulose nanocrystals for enhanced nanocomposite performance,” Cellulose, vol. 30, pp. 2217–2234, Jan. 2023, doi: 10.1007/s10570-022-04989-6.

 

[29] T. Sukprom, S. Chanklang, S. Roddecha, C. Niamnuy, P. Prapainainar, and A. Seubsai, “Lead ions removal using pineapple leaf-based modified celluloses,” Applied Science Engineering Progress, vol. 16, Apr. 2023, Art. no. 6002, doi: 10.14416/j.asep.2022.05.009.

 

[30] N. Rambabu, S. Panthapulakkal, M. Sain, and A. K. Dalai, “Production of nanocellulose fibers from pinecone biomass: Evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films,” Industrial Crops and Products, vol. 83, pp. 746–754, May 2016.

 

[31] N. Chanka, W. Mondach, P. Dittanet, S. Roddecha, C. Niamnuy, P. Prapainainar, and A. Seubsai, “Modification of pineapple leaf fibers with aminosilanes as adsorbents for H2S removal,” Chemosphere, vol. 266, Mar. 2021, Art. no. 129000, doi: 10.1016/j.indcrop.2015.11.083.

 

[32] C. Liu, B. Li, and H. Du, “Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods,” Carbohydrate Polymers, vol. 151, pp. 716–724, Oct. 2016, doi: 10.1016/j. carbpol.2016.06.025.

 

[33] F. Ghaemi, A. L. Chuah, H. Kargarzadeh, M. M. Abdi, N. F. W. M. Azli, and M. Abbasian, “Comparative study of the electrochemical, biomedical, and thermal properties of natural and synthetic nanomaterials,” Nanoscale Research Letters, vol. 13, p. 112, Apr. 2018, doi: 10.1186/ s11671-018-2508-3.

 

[34] B. Soni, E. B. Hassan, and B. Mahmoud, “Chemical isolation and characterization of different cellulose nanofibers from cotton stalks,” Carbohydrate Polymers, vol. 134, pp. 581–589, Dec. 2015, doi: 10.1016/j.carbpol.2015.08.031.

 

[35] A. Sriruangrungkamol and W. Chonkaew, “Modification of nanocellulose membrane by impregnation method with sulfosuccinic acid for direct methanol fuel cell applications,” Polymer Bulletin, vol. 78, pp. 3705–3728, Jul. 2021, doi: 10.1007/s00289-020-03289-y.

 

[36] M. Reowdecha, P. Dittanet, P. Sae-Oui, S. Loykulnant, and P. Prapainainar, “Film and latex forms of silica-reinforced natural rubber composite vulcanized using electron beam irradiation,” Heliyon, vol. 7, Jun. 2021, Art. no. e07176, doi: 10.1016/j.heliyon.2021.e07176.

 

[37] E. Abraham, M. S. Thomas, and C. John, “Green nanocomposites of natural rubber/nanocellulose: Membrane transport, rheological and thermal degradation characterizations,” Industrial Crops and Products, vol. 51, pp. 415–424, Nov. 2013, doi: 10.1016/j.indcrop.2013.09.022.

 

[38] W. Jiang and J. Gu, “Nanocrystalline cellulose isolated from different renewable sources to fabricate natural rubber composites with outstanding mechanical properties,” Cellulose, vol. 27, 5801–5813, May 2020, doi: 10.1007/ s10570-020-03209-3.

 

[39] A. Kumagai, N. Tajima, S. Iwamoto, T. Morimoto, A. Nagatani, T. Okazaki, and T. Endo, “Properties of natural rubber reinforced with cellulose nanofibers based on fiber diameter distribution as estimated by differential centrifugal sedimentation,” International Journal of Biological Macromolecules, vol. 121, pp. 989–995, Jan. 2019, doi: 10.1016/ j.ijbiomac.2018.10.090.

 

[40] X. Xu, F. Liu, and L. Jiang, “Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents,” ACS Applied Materials and Interfaces, vol. 5, pp. 2999–3009, Mar. 2013, doi: 10.1021/am302624t.

 

[41] P. Berki, K. László, N. T. Tung, and J. Karger-Kocsis, “Natural rubber/graphene oxide nanocomposites via melt and latex compounding: Comparison at very low graphene oxide content,” Journal of Reinforced Plastics and Composites, vol. 36, pp. 808–817, Feb. 2017, doi: 10.1177/073168441 7690929.

 

[42] J. Liu, T. Jianxin, K. Yun, Z. Wang, and X. Sun, “Investigation of thermodynamic and shape memory properties of alumina nanoparticle-loaded graphene oxide (GO) reinforced nanocomposites,” Materials and Design, vol. 181, Nov. 2019, Art. no. 107926, doi: 10.1016/j. matdes.2019.107926.

 

[43] B. Wongvasana, B. Thongnuanchan, A. Masa, H. Saito, T. Sakai, and N. Lopattananon, “Reinforcement behavior of chemically unmodified cellulose nanofiber in natural rubber nanocomposites,” Polymers, vol. 15, p. 1274, Mar. 2023, doi: 10.3390/polym15051274.

 

[44] N. M. F. Hakimi, S. H. Lee, W. C. Lum, S. F. Mohamad, S. S. A. O. A. Edrus, B. D. Park, and A. Azmi, “Surface modified nanocellulose and its reinforcement in natural rubber matrix nanocomposites: A review,” Polymers, vol. 13, p. 3241, Sep. 2021, doi: 10.3390/polym13193241.

 

[45] C. Correia, L. M. d. Oieira, and T. S. Valera, “The influence of bleached jute fiber filler on the properties of vulcanized natural rubber,” Materials Research, vol. 20, pp. 466–471, Oct. 2017, doi: 10.1590/1980-5373-MR-2017-0126.

 

[46] S. T. K. Rajan, K. J. Nagarajan, V. Balasubramani, K. Sathickbasha, M. R. Sanjay, S. Siengchin, and A. N. Balaji, “Investigation of mechanical and thermo-mechanical characteristics of silane-treated cellulose nanofibers from agricultural waste reinforced epoxy adhesive composites.” Internationl Journal of Adhesion and Adhesives, vol. 126, Aug. 2023, Art. no. 103492, doi: 10.1016/j.ijadhadh.2023.103492.

 

[47] G. Fredi, A. Dorigato, M. Bortolotti, A. Pegoretti, and D. N. Bikiaris, “Mechanical and functional properties of novel biobased poly(decylene-2,5- furanoate)/carbon nanotubes nanocomposite films,” Polymers (Basel), vol. 12, p. 2459, Oct. 2020, doi: 10.3390/polym12112459.

 

[48] G. Rathinasabapathi and A. Krishnamoorthy, “Cole-cole plot of graphene nano filler disseminated glass fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 44, pp. 3816–3822, Feb. 2021, doi: 10.1016/ j.matpr.2020.12.335.

 

[49] A. J. McCarthy and S. T. Williams, “Actinomycetes as agents of biodegradation in the environment — A review,” Gene, vol. 115, pp. 189–192, Jun. 1992, doi: 10.1016/0378-1119(92)90558-7.

 

[50] A. Linos, M. M. Berekaa, and R. Reichelt, “Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis,” Applied Environmental Microbiology, vol. 66, pp. 1639– 1645, Apr. 2000, doi: 10.1128/aem.66.4.1639- 1645.2000.

 

[51] E. A. Barka, P. Vatsa, L. Sanchez, N. Gaveau- Vaillant, C. Jacquard, H. P. Klenk, C. Clément, Y. Ouhdouch, and G. P. V. Weze, “Taxonomy, physiology, and natural products of actinobacteria,” Microbiology and Molecular Biology Reviews, vol. 80, pp. 1–43, Mar. 2016, doi: 10.1128/ mmbr.00019-15.

Full Text: PDF

DOI: 10.14416/j.asep.2023.11.010

Refbacks

  • There are currently no refbacks.