Page Header

Bio-sourced Black Soldier Fly (Hermetia illucens) Maggot Chitosan/PVA/PAN-based Polymer Electrolyte Membrane for Sustainable Energy Storage Applications

Muhammad Thoriq Al Fath, Nisaul Fadilah Dalimunthe, Rivaldi Sidabutar, Michael Michael, Rosma Natalia Samosir, Thiodorus Marvin Tjandra, Gina Cynthia Raphita Hasibuan

Abstract


The global energy crisis sparked by dwindling fossil fuel reserves has precipitated efforts to develop sustainable battery technologies, as conventional dry cell batteries utilize toxic lead, graphite, and manganese oxide components that pollute the environment. Chitosan derived from black soldier fly (Hermetia illucens) maggot presents a biodegradable substitute. This study fabricated chitosan-based polymer electrolyte membranes by blending chitosan with polyvinyl alcohol (PVA) and polyacrylonitrile (PAN), then doping with ammonium chloride (NH4Cl) using the solvent-casting method. Varying NH4Cl compositions aimed to maximize ionic conductivity. Chitosan (13.455% water, 27.810% ash) was subsequently combined with PVA/PAN (20:80 w/w), NH4Cl, and casted onto petri dishes. Electrolyte membranes exhibited a maximum conductivity of 0.19612 ± 0.01572 S/cm with 0.9 g NH4Cl. FTIR spectroscopy verified the incorporation of chitosan (peaks at 3446.79 cm–1, 1643.35 cm–1, and 1151.50 cm–1), PVA (3446.79 cm–1 and 1136.07 cm–1), and NH4Cl (3371.57 cm–1 and 721.38 cm–1). SEM imaging visualized the incorporation of NH4Cl within the membrane. The chitosan-based biodegradable approach is compelling but limited by 0.19612 S/cm ionic conductivity, necessitating further compositional and processing optimizations for viable applications. Though it is promising for sustainable bio-sourced energy storage, challenges remain in enhancing conductivity through advanced polymer blends/dopants and scaling up for commercial biobattery manufacturing.

Keywords



[1]    A. S. Ramadana, A. S. Ballqis, Khairunnisa, Lazulva, and Yusbarina, “The potential of bio-battery biomass as an alternative energy source (Review article),” in International Conference of Humanities and Social Science (ICHSS), 2022, pp. 317–327.

 

[2]    G. Rumbino, L. Maniambo, M. Soll, G. Dirgantari, and O. Togibasa, “Performance enhancement of biobattery from tropical almond paste using acetic acid addition,” Indian Journal of Pure & Applied Physics, vol. 13, no. 1, pp. 99–105, Apr. 2023, doi: 10.13057/ijap.v12i2.61245.

 

[3]    Y. Y. Lim, A. Miskon, and A. M. A. Zaidi, “CuZn complex used in electrical biosensors for drug delivery systems,” Materials, vol. 15, no. 21, Nov.  2022, doi: 10.3390/ma15217672.

 

[4]    Y. Y. Lim, A. M. A. Zaidi, and A. Miskon, “Composing on-program triggers and on-demand stimuli into biosensor drug carriers in drug delivery systems for programmable arthritis therapy,” Pharmaceuticals, vol. 15, no. 11, Oct. 2022, doi: 10.3390/ph15111330.

 

[5]    Y. Y. Lim, A. M. A. Zaidi, and A. Miskon, “Combining copper and zinc into a biosensor for anti-chemoresistance and achieving osteosarcoma therapeutic efficacy,” Molecules, vol. 28, no. 7, Mar. 2023, doi: 10.3390/molecules28072920.

 

[6]    R. Singh, S. Janakiraman, M. Khalifa, S. Anandhan, S. Ghosh, A. Venimadhav, and K. Biswas, “A high thermally stable polyacrylonitrile (PAN)-based gel polymer electrolyte for rechargeable Mg-Ion battery,” Journal of Materials Science: Materials in Electronics, vol. 31, no. 24, pp. 22912–22925, Nov. 2020, doi: 10.1007/s10854-020-04818-1.

 

[7]    N. D. Takarina, A. B. Indah, A. A. Nasrul, A. Nurmarina, A. Saefumillah, A. Fanani, and K. D. P. Loka, “Optimisation of deacetylation process for chitosan production from red snapper (Lutjanus sp.) scale wastes,” International Seminar on Mathematics, Science, and Computer Science Education, vol. 812, pp. 1–5, 2017, doi: 10.1088/1742-6596/812/1/012110.

 

[8]    A. Fehervari, W. P. Gates, C. Gallage, and F. Collins, “A porous stone technique to measure the initial water uptake by supplementary cementitious materials,” Minerals, vol. 11, no. 11, Oct. 2021, doi: 10.3390/min11111185.

 

[9]    Y. Gao, J. H. Cho, J. Ryu, and S. Choi, “A scalable yarn-based biobattery for biochemical energy harvesting in smart textiles,” Nano Energy, vol. 74, no. 1, pp. 1–9, Aug. 2020, doi: 10.1016/j.nanoen.2020.104897.

 

[10]  S. R. Ningrum, S. M. Sinaga, and U. Harahap, “Isolation of chitosan from cuttlefish bones,” International Journal of Science, Technology & Management, vol. 3, no. 3, pp. 785–788, May 2022, doi: 10.46729/ijstm.v3i3.523.

 

[11]  D. Anggreini, Yuandani, and S. M. Sinaga, “Isolation of chitosan from dogol shrimp skin (Parapenaeopsis Sculptilis),” International Journal of Science, Technology & Management, vol. 4, no. 1, pp. 69–72, Jan. 2023, doi: 10.46729/ijstm.v4i1.737.

 

[12]  R. Rachmawaty, S. Sahribulan, S. E. Putri, and W. F. Arisma, “Formation of chitosan from black soldier fly (hermetia illucens) pupae using microwaves radiation energy,” Jurnal Aisyah, vol. 8, no. 2, pp. 1173–1180, Jun. 2023, doi: 10.30604/jika.v8i2.2142.

 

[13]  R. M. Silverstein, X. W. Francis, and J. K. David, Spectrometric identification of Organic Compound, 7th ed. Genola, UT: Spring Lake Publishing, 1989.

 

[14]  L. Fan, M. Wang, Z. Zhang, G. Qin, X. Hu, and Q. Chen, “Preparation and characterization of pva alkaline solid polymer electrolyte with addition of bamboo charcoal,” Materials, vol. 11, no. 5, p. 679, Apr. 2018, doi: 10.3390/ma11050679.

 

[15]  R. Arat, H. Baskan, G. Ozcan, and P. Altay, “Hydrophobic silica-aerogel integrated polyacrylonitrile nanofibers,” Journal of Industrial Textiles, vol. 51, no. 3, pp. 4740S–4756S, Jun. 2022. doi: 10.1177/1528083720939670.

 

[16]  R. S. Rafidah, W. Rashmi, M. Khalid, W. Y. Wong, and J. Priyanka, “Recent progress in the development of aromatic polymer-based proton exchange membranes for fuel cell applications,” Polymers, vol. 12, no. 5, May 2020, Art. no. 1061, doi: 10.3390/polym12051061.

 

[17]  S. Dalwadi, A. Goel, C. Kapetanakis, D. S. Cruz, and X. Hu, “The integration of biopolymer-based materials for energy storage applications: A review,” International Journal of Molecular Sciences, vol. 24, no. 4, Feb. 2023, Art. no. 3975, doi: 10.3390/ijms24043975.

 

[18]  S. S. Azahar, T. S. Hamidon, A. F. A. Latip, and M. H. Hussin, “Physicochemical and conductivity studies of chitosan-tapioca flour-LiBF4 gel polymer electrolytes,” Chemical Physics Impact, vol. 3, no. 1, Dec. 2021, Art. no. 100055, doi: 10.1016/j.chphi.2021.100055.

 

[19]  M. Yadav, B. Kaushik, G. K. Rao, C. M. Srivastava, and D. Vaya, “Advances and challenges in the use of chitosan and its derivatives in biomedical fields: A review,” Carbohydrate Polymer Technologies and Applications, vol. 5, Jun. 2023, Art. no. 16150, doi: 10.1016/j.carpta.2023.100323.

 

[20]  F. Khoerunnisa, P. C. Amanda, M. Nurhayati, H. Hendrawan, W. W. Lestari, E. E. Sanjaya, M. Handayani, W-D. Oh, and J. K. Lim, “Promotional effect of ammonium chloride functionalization on the performance of polyethersulfone/chitosan composite-based ultrafiltration membrane,” Chemical Engineering Research and Design, vol. 190, no. 1, pp. 366–378, Feb. 2023, doi: 10.1016/j.cherd.2022.12.040.

 

[21]  S. Woranuch, A. Pangon, K. Puagsuntia, N. Subjalearndee, and V. Intasanta, “Rice flour-based nanostructures via a water-based system: Transformation from powder to electrospun nanofibers under hydrogen-bonding induced viscosity, crystallinity and improved mechanical property,” RSC Advances, vol. 2017, no. 7, pp. 19960–19966, Apr. 2017, doi: 10.1039/C7RA01485F.

 

[22]  N. M. Khan, N. S. M. Ali, A. A. A. Fuzlin, and A. S. Salihin, “Ionic conductiviy of alginate-NH4Cl polymer electrolyte,” Makara Journal of Technology, vol. 24, no. 3, pp. 125–130, Dec. 2020, doi: 10.7454/mst.v24i3.3841.

 

[23] M. T. Al Fath, G. E. Ayu, M. Lubis, G. C. R. Hasibuan, and N. F. Dalimunthe, “Mechanical and thermal properties of starch avocado seed bioplastic filled with cellulose nanocrystal (CNC) as filler and potassium chloride (KCl) as dispersion agent,” Rasayan Journal of Chemistry, vol. 16, no. 3, pp. 1630–1636, Sep. 2023, doi: 10.31788/RJC.2023.1638464.

 

[24] Z. Li, Q. Ding, and W. Han, “PVA-based high carboxyl group substituted modified cellulose nanofiber composite hydrogel for flexible new air battery PVA-based high carboxyl group substituted modified cellulose nanofiber composite hydrogel for flexible new air battery,” in International Conference on Chemistry and Energy Research, Jan. 2021, pp. 1–7, doi: 10.1088/1755-1315/639/1/012044.

 

[25]  F. Khoerunnisa, P. C. Amanda, M. Nurhayati, H. Hendrawan, W. W. Lestari, E. H. Sanjaya, M. Handayani, W. D. Oh, and J. K. Lim, “Promotional effect of ammonium chloride functionalization on the performance of polyethersulfone/chitosan composite-based ultrafiltration membrane,“ Chemical Engineering Research and Design, vol. 190, pp. 366–378, Dec. 2022, doi: 10.1016/j.cherd.2022.12.040.

Full Text: PDF

DOI: 10.14416/j.asep.2024.07.002

Refbacks

  • There are currently no refbacks.