Page Header

Facile Synthesis of Hybrid-Polyoxometalates Nanocomposite for Degradation of Cationic and Anionic Dyes in Water Treatment

Wei Wei Leow, Alvin Duke, Siti Kartini Enche Ab Rahim, Qi Hwa Ng, Peng Yong Hoo, Amira Mohd Nasib, Muhamad Qauyum Zawawi Ahamad Suffin, Norazharuddin Shah Abdullah

Abstract


Photocatalysis emerges as a promising method for treating organic dye contaminated wastewater. This process involves the use of photocatalysts through light activation, typically semiconductors such as titanium dioxide (TiO2) or polyoxometalates (POM) to generate reactive species capable of degrading organic pollutants. Several factors influence the photodegradation of ionic and cationic dyes including chemical properties, reaction mechanism and degradation efficiency. This work evaluated photodegradation performance of methyl orange (MO) and malachite green (MG) dyes using hybrid-polyoxometalate (HPOM) photocatalyst. Fourier Transform Infrared Spectroscopy (FTIR) identified the characteristic band at 3463.66 cm–1 (O-H) and 997.74 cm–1 (W-O). Scanning Electron Microscopy (SEM) revealed the presence of rod-like and granular structures in HPOM, representing silver acetate and sodium tungstate. X-ray diffraction (XRD) confirmed characteristic peak of Keggin structure, revealing high crystallinity of HPOM. UV-assisted photodegradation was evaluated on different parameters (initial dye concentration, photocatalyst dosage and pH), highlighting HPOM’s better affinity for degrading cationic dye. The optimum photodegradation conditions for MG and MO dyes were 20 ppm dye concentration, 100 mg photocatalyst dosage, and pH 7 and 8, respectively. The kinetic data was fitted with the Langmuir Hinshelwood kinetic model, indicating pseudo-first-order kinetics. HPOM exhibited a higher rate constant, k for MG (k = 0.0068 min–1) than MO (k = 0.0029 min–1).

Keywords



[1]    T. Islam, Md. R. Repon, T. Islam, Z. Sarwar, and M. M. Rahman, “Impact of textile dyes on health and ecosystem: A review of structure, causes, and potential solutions,” Environmental Science and Pollution Research, vol. 30, no. 4, pp. 9207–9242, 2023, doi: 10.1007/s11356-022-24398-3.

[2]    L. K. Akula, R. K. Oruganti, D. Bhattacharyya, and K. K. Kurilla, “Treatment of marigold flower processing wastewater using a sequential biological-electrochemical process,” Applied Science and Engineering Progress, vol. 14, no. 3, pp. 525–542, 2021, doi: 10.14416/j.asep.2021.04.001.

[3]    S. S. Affat, “Classifications, advantages, disadvantages, toxicity effects of natural and synthetic dyes: A review,” University of Thi-Qar Journal of Science, vol. 8, no. 1, pp. 130–135, 2021.

[4]    F. Uddin, “Environmental hazard in textile dyeing wastewater from local textile industry,” Cellulose, vol. 28, no. 17, pp. 10715–10739, 2021, doi: 10.1007/s10570-021-04228-4.

[5]    P. O. Oladoye, T. O. Ajiboye, W. C. Wanyonyi, E. O. Omotola, and M. E. Oladipo, “Insights into remediation technology for malachite green wastewater treatment,” Water Science and Engineering, vol. 16, no. 3, pp. 261–270, 2023, doi: 10.1016/j.wse.2023.03.002.

[6]    K. Maheshwari, M. Agrawal, and A. B. Gupta, Dye Pollution in Water and Wastewater BT - Novel Materials for Dye-containing Wastewater Treatment. Singapore: Springer, 2021.

[7]    C. Bamroongwongdee, S. Gaewkhem, and P. Siritrakul, “Kinetics, equilibrium, and thermodynamics of methyl orange adsorption onto modified rice husk,” KMUTNB International Journal of Applied Science and Technology, vol. 11, no. 3, pp. 185–197, 2018, doi: 10.14416/j.ijast.2018.05.002.

[8]    L. Wu , X. Liu, G. Lv, R. Zhu, L. Tian, M. Liu, Y. Li, W. Rao, T. Liu, and L. Liao, “Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures,” Scientific Reports,  vol. 11, no. 1, pp. 1–11, 2021, doi: 10.1038/ s41598-021-90235-1.

[9]    H. J. Li, J. H. Xu, L. Q. Wang, D. D. Hou, Z. R. Wang, and H. Z. Li, “Adsorption properties of modified ATP-RGO composite aerogel for removal of malachite green and methyl orange from unitary and binary aqueous solutions,” Adsorption Science and Technology, vol. 2022, 2022, doi: 10.1155/2022/5455330.

[10]  S. Yadav and S. Kamsonlian, “Progress on the development of techniques to remove contaminants from wastewater: A review,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6729, doi: 10.14416/ j.asep.2023.02.001.

[11]  S. Sampurnam, S. Muthamizh, T. Dhanasekaran, D. Latha, A. Padmanaban, P. Selvam, A. Stephen, and V. Narayanan., “Synthesis and characterization of Keggin-type polyoxometalate/ zirconia nanocomposites—Comparison of its photocatalytic activity towards various organic pollutants,” Journal of Photochemistry Photobiology A: Chemistry, vol. 370, pp. 26–40, 2019, doi: 10.1016/j.jphotochem.2018.10.031.

[12]  W. S. Koe, J. W. Lee, and W. C. Chong, “An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane,” Colloid and Interface Science Journal, vol. 27, pp. 2522–2565, 2019.

[13]  Z. Xu, N. Zada, F. Habib, H. Ullah, K. Hussain, N. Ullah, M. Bibi, M. Bibi, H. Ghani, S. Khan, K. Hussain, X. Cai, and H. Ullah, “Enhanced photocatalytic degradation of malachite green dye using silver–manganese oxide nanoparticles,” Molecules, vol. 28, no. 17, 2023, doi: 10.3390/ molecules28176241.

[14]  P. L. Hariani, M. Said, Salni, N. Aprianti, and Y. A. L. R. Naibaho, “High efficient photocatalytic degradation of methyl orange dye in an aqueous solution by CoFe2O4-SiO2-TiO2 magnetic catalyst,” Journal of Ecological Engineering, vol. 23, no. 1, pp. 118–128, 2022, doi: 10.12911/22998993/143908.

[15]  A. Hamisu, U. I. Gaya, and A. H. Abdullah, “Bi-template assisted sol-gel synthesis of photocatalytically-active mesoporous anatase TiO2 nanoparticles,” Applied Science and Engineering Progress, vol. 14, no. 3, pp. 313–327, 2021, doi: 10.14416/j.asep.2021.04.003.

[16]  D. Dodoo-Arhin, T. Asiedu, B. Agyei-Tuffour, E. Nyankson, D. Obada, and J. M. Mwabora, “Photocatalytic degradation of Rhodamine dyes using zinc oxide nanoparticles,” Materials Today Proceedings, vol. 38, pp. 809–815, 2021, doi: 10.1016/j.matpr.2020.04.597.

[17]  P. Niu, D. Wang, A. Wang, Y. Liang, and X. Wang, “Fabrication of bifunctional TiO2/POM microspheres using a layer-by-layer method and photocatalytic activity for methyl orange degradation,” Journal of Nanomaterials, vol. 2018, 2018, doi: 10.1155/2018/4212187.

[18]  C. Streb, K. Kastner, and J. Tucher, “Polyoxometalates in photocatalysis,” Physical Sciences Reviews, vol. 4, no. 6, pp. 1–10, 2019, doi: 10.1515/psr-2017-0177.

[19]  K. A. Fuad and S. K. E. A. Ab Rahim, “Comparison of HPOM and TiO2 as Photocatalyst for degradation of methylene blue in aqueous solution,” International Journal of Current Research in Science, Engineering & Technology, vol. 1, no. Spl-1, p. 300, 2018, doi: 10.30967/ijcrset.1.s1.2018.300-306.

[20]  A. V. Anyushin, A. Kondinski, and T. N. Parac-Vogt, “Hybrid polyoxometalates as post-functionalization platforms: From fundamentals to emerging applications,” Chemical Society Reviews, vol. 49, no. 2, pp. 382–432, 2020, doi: 10.1039/c8cs00854j.

[21]  J. Zhang, Y. Huang, G. Li, and Y. Wei, “Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications,” Coordination Chemistry Reviews, vol. 378, pp. 395–414, 2019, doi: 10.1016/j.ccr.2017.10.025.

[22]  G. Murmu, S. Samajdar, S. Ghosh, K. Shakeela, and S. Saha, “Tungsten-based Lindqvist and Keggin type polyoxometalates as efficient photocatalysts for degradation of toxic chemical dyes,” Chemosphere, vol. 346, 2024, Art. no. 140576, doi: 10.1016/j.chemosphere.2023.140576.

[23]  N. Hiyoshi, “Fabrication of Keggin-type polyoxometalate membranes at the gas−liquid interface,” Langmuir, vol. 36, no. 14, pp. 3958–3962, 2020.

[24]  J. Arichi, M. M. Pereira, P. M. Esteves, and B. Louis, “Synthesis of Keggin-type polyoxometalate crystals,” Solid State Sciences, vol. 12, no. 11, pp. 1866–1869, 2010, doi: 10.1016/j.solidstatesciences. 2010.01.022.

[25]  S. Y. Lai, K. H. Ng, C. K. Cheng, H. Nur, M. Nurhadi, and M. Arumugam, “Photocatalytic remediation of organic waste over Keggin-based polyoxometalate materials: A review,” Chemosphere, vol. 263, 2021, Art. no. 128244, doi: 10.1016/j.chemosphere.2020.128244.

[26]  E. N. A. Azhari, S. K. E. Ab Rahim, A. Duke, and H. P. Yong, “Characterization and kinetic studies on photocatalytic degradation of phenol in aqueous solution,” IOP Conference Series: Materials Science and Engineering, vol. 932, no. 1, 2020, doi: 10.1088/1757-899X/932/1/012022.

[27]  E. I. García-López, G. Marcì, I. Krivtsov, J. Casado Espina, L. F. Liotta, and A. Serrano, “Local structure of supported Keggin and Wells-Dawson heteropolyacids and its influence on the catalytic activity,” Journal of Physical Chemistry C, vol. 123, no. 32, pp. 19513–19527, 2019, doi: 10.1021/acs.jpcc.9b03659.

[28]  D. A. Yaseen and M. Scholz, “Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review,” International Journal of Environmental Science and Technology, vol. 16, no. 2, 2019, doi: 10.1007/s13762-018-2130-z.

[29]  R. Li, Y. Wang, F. Zeng, C. Si, D. Zhang, W. Xu, and J. Shi, “Advances in polyoxometalates as electron mediators for photocatalytic dye degradation,” International Journal of Molecular Sciences, vol. 24, no. 20, 2023, doi: 10.3390/ijms242015244.

[30]  R. Khoshnavazi, L. Bahrami, F. Havasi, and E. Naseri, “H3PW12O40 supported on functionalized polyoxometalate organic-inorganic hybrid nanoparticles as efficient catalysts for three-component Mannich-type reactions in water,” RSC Advances, vol. 7, no. 19, pp. 11510–11521, 2017, doi: 10.1039/c6ra27519b.

[31]  M. Singh, A. Yadav, and C. P. Pradeep, “Keggin cluster modulated photocatalytic activity of aryl sulfonium polyoxometalate hybrids toward dichromate reduction,” Langmuir, vol. 38, no. 51, pp. 16034–16045, 2022, doi: 10.1021/acs. langmuir.2c02529.

[32]  C. Q. Xu, Y. H. Xiao, Y. X. Yu, and W. De Zhang, “The role of hydrogen bonding on enhancement of photocatalytic activity of the acidified graphitic carbon nitride for hydrogen evolution,” Journal of Materials Science, vol. 53, no. 1, pp. 409–422, 2018, doi: 10.1007/ s10853-017-1507-6.

[33]  M. Nakano, T. Fujiwara, and N. Koga, “Thermal decomposition of silver acetate: Physico-geometrical kinetic features and formation of silver nanoparticles,” Journal of Physical Chemistry C, vol. 120, no. 16, pp. 8841–8854, 2016, doi: 10.1021/acs.jpcc.6b02377.

[34]  J. Wu, D. Wu, W. Peng, Y. Ji, and H. Tong, “Research progress of polyoxometalates photocatalyst for degradation of organic wastewater,” Applied Chemical Engineering, vol. 5, no. 1, pp. 92–106, 2022, doi: 10.24294/ace.v5i1.1635.

[35]  H. Cai, X. Wu, Q. Wu, and W. Yan, “Synthesis and high proton conductive performance of a quaternary vanadomolybdotungstosilicic heteropoly acid,” Dalton Transactions, vol. 45, no. 36, pp. 14238–14242, 2016, doi: 10.1039/c6dt02727j.

[36]  A. Aouissi, S. S. Al-Deyab, A. Al-Owais, and A. Al-Amro, “Reactivity of heteropolytungstate and heteropolymolybdate metal transition salts in the synthesis of dimethyl carbonate from methanol and CO2,” International Journal of Molecular Sciences, vol. 11, no. 7, pp. 2770–2779, 2010, doi: 10.3390/ijms11072770.

[37]  D. S. Aher, K. R. Khillare, and S. G. Shankarwar, “Incorporation of Keggin-based H3PW7Mo5O40into bentonite: synthesis, characterization and catalytic applications,” RSC Advances, vol. 11, no. 19, pp. 11244–11254, 2021, doi: 10.1039/d1ra01179k.

[38]  C. Djebbari, E. zouaoui, N. Ammouchi, C. Nakib, D. Zouied, and K. Dob, “Degradation of Malachite green using heterogeneous nanophotocatalysts (NiO/TiO2, CuO/TiO2) under solar and microwave irradiation,” SN Applied Sciences, vol. 3, no. 2, pp. 1–11, 2021, doi: 10.1007/s42452-021-04266-4.

[39]  I. Groeneveld, M. Kanelli, F. Ariese, and M. R. van Bommel, “Parameters that affect the photodegradation of dyes and pigments in solution and on substrate – An overview,” Dyes and Pigments, vol. 210, 2023, Art. no. 110999, doi: 10.1016/j.dyepig.2022.110999.

[40]  M. S. Sha, H. Anwar, F. N. Musthafa, H. Al-Lohedan, S. Alfarwati, J. R. Rajabathar, J. Khalid Alahmad, J. J. Cabibihan, M. Karnan, and K. Kumar Sadasivuni, “Photocatalytic degradation of organic dyes using reduced graphene oxide (rGO),” Scientific Reports, vol. 14, no. 1, pp. 1–14, 2024, doi: 10.1038/s41598-024-53626-8.

[41]  S. R. Sowmya, G. M. Madhu, and M. Hashir, “Studies on nano-engineered TiO2 photo catalyst for effective degradation of dye,” IOP Conference Series: Materials Science and Engineering, vol. 310, no. 1, pp. 0–11, 2018, doi: 10.1088/1757-899X/310/1/012026.

[42]  R. V. C. Rubi, J. G. Olay, P. B. G. Caleon, R. A. F. De Jesus, M. B. L. Indab, R. C. H. Jacinto, M. S. Sabalones, F. dela Rosa, and N. L. Hamidah, “Photocatalytic degradation of diazinon in g-C3N4/Fe(III)/persulfate system under visible LED light irradiation,” Applied Science and Engineering Progress, vol. 14, no. 1, pp. 100–107, 2021, doi: 10.14416/J.ASEP.2020.12.008.

[43]  A. P. Aziztyana, S. Wardhani, Y. P. Prananto, D. Purwonugroho, and Darjito, “Optimisation of methyl orange photodegradation using TiO2-zeolite photocatalyst and H2O2 in acid condition,” IOP Conference Series: Materials Science and Engineering, vol. 546, no. 4, 2019, doi: 10.1088/1757-899X/546/4/042047.

[44]  M. Taghdiri, “Selective Adsorption and Photocatalytic degradation of dyes using polyoxometalate hybrid supported on magnetic activated carbon nanoparticles under sunlight, visible, and UV irradiation,” International Journal of Photoenergy, vol. 2017, 2017, doi: 10.1155/2017/8575096.

[45]  R. Gusain, N. Kumar, and S. S. Ray, “Factors influencing the photocatalytic activity of photocatalysts in wastewater treatment,” Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment, pp. 229–270, 2020, doi: 10.1002/9781119631422.ch8.

[46]  H. Zhou, H. Wang, C. Yue, L. He, H. Li, H. Zhang, S. Yang, and T. Ma, “Photocatalytic degradation by TiO2-conjugated/coordination polymer heterojunction: Preparation, mechanisms, and prospects,” Applied Catalysis B, vol. 344, 2024, Art. no. 123605, doi: 10.1016/j.apcatb. 2023.123605.

[47]  R. B. Rajput, S. N. Jamble, and R. B. Kale, “A review on TiO2/SnO2 heterostructures as a photocatalyst for the degradation of dyes and organic pollutants,” Journal of Environmental Management, vol. 307, pp. 1–17, 2022, doi: 10.1016/j.jenvman.2022.114533.

[48]  A. Mohamed, M. M. Ghobara, M. K. Abdelmaksoud, and G. G. Mohamed, “A novel and highly efficient photocatalytic degradation of malachite green dye via surface modified polyacrylonitrile nanofibers/biogenic silica composite nanofibers,” Separation and Purification Technology, vol. 210, pp. 935–942, 2019, doi: 10.1016/j.seppur.2018.09.014.

[49]  A. Djebli, A. Boudjemaa, H. Bendjeffal, H. Mamine, T. Metidji, H. Bekakria, and Y. Bouhedja, “Photocatalytic degradation of methyl orange using Zn@[Fe(CN)5NO] complex under sunlight irradiation,” Inorganic and Nano-Metal Chemistry, vol. 50, no. 11, pp. 1115–1122, 2020, doi: 10.1080/24701556.2020.1735428.

[50]  P. Muthirulan, C. Nirmala Devi, and M. Meenakshi Sundaram, “Synchronous role of coupled adsorption and photocatalytic degradation on CAC–TiO2 composite generating excellent mineralization of alizarin cyanine green dye in aqueous solution,” Arabian Journal of Chemistry, vol. 10, pp. S1477–S1483, 2017, doi: 10.1016/j.arabjc.2013.04.028.

[51]  W. A. Khanday, M. J. Ahmed, P. U. Okoye, E. H. Hummadi, and B. H. Hameed, “Single-step pyrolysis of phosphoric acid-activated chitin for efficient adsorption of cephalexin antibiotic,” Bioresource Technology, vol. 280, pp. 255–259, 2019, doi: 10.1016/j.biortech.2019.02.003.

[52]  N. B. Swan and M. A. A. Zaini, “Adsorption of malachite green and congo red dyes from water: Recent progress and future outlook,” Ecological Chemistry and Engineering S, vol. 26, no. 1, pp. 119–132, 2019, doi: 10.1515/eces-2019-0009.

[53]  C. R. Girish, “Multicomponent adsorption and the interaction between the adsorbent and the adsorbate: A review,” International Journal of Mechanical Engineering and Technology, vol. 9, no. 7, pp. 177–188, 2018.

[54]  M. Ghali, C. Brahni, M. Benltifa, F. Dumur, S. Duval, C. Simonnet-Jégat, F. Morlet-Savary, S. Jellali, L. Bousselmi, and J. Lalevée, “New hybrid polyoxometalate/polymer composites for photodegradation of eosin dye,” Journal of Polymer Science, Part A: Polymer Chemistry, vol. 57, no. 14, pp. 1538–1549, 2019, doi: 10.1002/pola.29416.

[55]  T. O. Ajiboye, O. A. Oyewo, and D. C. Onwudiwe, “Adsorption and photocatalytic removal of Rhodamine B from wastewater using carbon-based materials,” FlatChem, vol. 29, 2021, Art. no. 100277, doi: 10.1016/j.flatc.2021. 100277.

[56]  A. P. Aziztyana, S. Wardhani, Y. P. Prananto, D. Purwonugroho, and Darjito, “Optimisation of methyl orange photodegradation using TiO2-zeolite photocatalyst and H2O2 in acid condition,” IOP Conference Series: Materials Science and Engineering, vol. 546, no. 4, 2019, doi: 10.1088/1757-899X/546/4/042047.

[57]  D. F. Ollis, “Kinetics of photocatalyzed reactions: Five lessons learned,” Frontiers in Chemistry, vol. 6, 2018, doi: 10.3389/fchem.2018.00378.

[58]  M. S. F. A. Zamri and N. Sapawe, “Kinetic study on photocatalytic degradation of phenol using green electrosynthesized TiO2 nanoparticles,” Materials Today Proceedings, vol. 19, pp. 1261–1266, 2019, doi: 10.1016/j.matpr.2019.11.131.

[59]  F. Zhou, C. Yan, T. Liang, Q. Sun, and H. Wang, “Photocatalytic degradation of Orange G using sepiolite-TiO2 nanocomposites: Optimization of physicochemical parameters and kinetics studies,” Chemical Engineering Science, vol. 183, pp. 231–239, 2018, doi: 10.1016/j.ces.2018.03.016.

[60]  A. Gouasmia, E. Zouaoui, A. A. Mekkaoui, A. Haddad, and D. Bousba, “Highly efficient photocatalytic degradation of malachite green dye over copper oxide and copper cobaltite photocatalysts under solar or microwave irradiation,” Inorganic Chemistry Communications, vol. 145, 2022, Art. no. 110066, doi: 10.1016/ j.inoche.2022.110066.

[61]  G. Arroyo-Ortega, J. F. Hernández Paz, I. Olivas Armendariz, H. Camacho-Montes, C. López-Díaz-De León, H. Reyes-Blas, and C. A. Rodríguez-González, “Photocatalytical degradation of methyl orange (MO) using ZnO nanoparticles from alkaline wasted batteries. The effect of the MO, catalyst, and organic loads,” Digest Journal of Nanomaterials and Biostructures, vol. 17, no. 4, pp. 1241–1248, 2022, doi: 10.15251/DJNB. 2022.174.1241.

[62]  A. M. Hidalgo, G. León, M. Gómez, M. D. Murcia, E. Gómez, and J. A. Macario, “Removal of different dye solutions: A comparison study using a polyamide nf membrane,” Membranes (Basel), vol. 10, no. 12, pp. 1–16, 2020, doi: 10.3390/membranes10120408.

[63]  M. Shafique, M. S. Mahr, M. Yaseen, and H. N. Bhatti, “CQD/TiO2 nanocomposite photocatalyst for efficient visible light-driven purification of wastewater containing methyl orange dye,” Materials Chemistry and Physics, vol. 278, 2022, Art. no. 125583, doi: 10.1016/ j.matchemphys.2021.125583.

[64]  Z. A. M. Hir, P. Moradihamedani, A. H. Abdullah, and M. A. Mohamed, “Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye,” Materials Science in Semiconductor Processing, vol. 57, pp. 157–165, 2017, doi: 10.1016/j.mssp.2016.10.009.

[65]  D. A. Sabit and S. E. Ebrahim, “Fabrication of magnetic BiOBr/ZnFe2O4/CuO heterojunction for improving the photocatalytic destruction of malachite green dye under LED irradiation: Dual S-scheme mechanism,” Materials Science in Semiconductor Processing, vol. 163, 2023, Art. no. 107559, doi: 10.1016/j.mssp.2023.107559.

Full Text: PDF

DOI: 10.14416/j.asep.2024.07.014

Refbacks

  • There are currently no refbacks.