Page Header

Dewaxing and Post-Pretreatment Washing: Impact on Sugar and Ethanol Yields from Tobacco Residue

Muhammad Ayub Khan, Elizabeth Jayex Panakkal, Malinee Sriariyanun, Marttin Paulraj Gundupalli, Supacharee Roddecha, Keerthi Katam, Jayapriya Jayaprakash, Kraipat Cheenkachorn

Abstract


Waste generated from tobacco cultivation has negatively impacted the environment due to its inappropriate disposal methods. This negative impact can be mitigated by valorizing tobacco residue. In this study, tobacco residue was pretreated and the effect of dewaxing and washing on sugar and ethanol yields was studied. Tobacco residue was pretreated with alkali (2.17 M NaOH, 94 °C, 4.5 h) or acid (2.95 wt% H2SO4, 133 °C, 0.92 h). The effect of dewaxing was studied by incorporating the dewaxing step prior to pretreatment. Similarly, the effect of washing was analyzed by omitting post-pretreatment washing. Compositional analysis revealed that dewaxing prior to alkaline pretreatment improved cellulose content by 80% compared to the standard pretreated sample. Enzymatic hydrolysis of the samples showed that pretreatment had improved sugar yield by up to 6.1 times. Moreover, the sugar yield further improved when dewaxing and post-pretreatment washing steps were incorporated into the process. The unwashed biomass showed a 3-fold decrease in sugar compared to untreated biomass. Furthermore, fermentation studies showed that the dewaxed alkaline pretreated tobacco residue enhanced ethanol yield by 34% compared to standard pretreated biomass. Thus, this study reveals the potential of tobacco residue valorization and emphasizes the importance of dewaxing and post-pretreatment washing in a biorefinery.

Keywords



[1]    FAO, “FAOSTAT,” 2024. [Online]. Available: https://www.fao.org/faostat/en/#data/QCL/visualize

[2]    J. Peacock, “A FE-SEM study on the tobacco leaf epidermis,” South African Journal of Botany, vol. 64, no. 6, pp. 361–367, 1998, doi: 10.1016/S0254-6299(15)30925-X.

[3]    Statista, “Global tobacco production 2022 | Statista,” 2024. [Online]. Available: https://www.statista.com/statistics/261189/global-tobacco-production-since-1980/

[4]    M. I. Sifola, L. Carrino, E. Cozzolino, L. Del Piano, G. Graziani, and A. Ritieni, “Potential of pre-harvest wastes of tobacco (Nicotiana tabacum L.) crops, grown for smoke products, as source of bioactive compounds (Phenols and Flavonoids),” Sustainability, vol. 13, no. 4, Feb. 2021, Art. no. 2087, doi: 10.3390/SU13042087.

[5]    M. Malnar, V. Radojičić, G. Kulić, Z. Dinić, and O. Cvetković, “Energy and emission properties of burley tobacco stalk briquettes and its combinations with other biomass as promising replacement for coal,” Archives of Industrial Hygiene and Toxicology, vol. 74, no. 1, pp. 61–68, Mar. 2023, doi: 10.2478/AIHT-2023-74-3630.

[6]    S. Duttagupta, K. Nynas, W. Richardot, S. B. Salam, M. Pennington, J. Wong, L. C. Van De Werfhorst, N. G. Dodder, T. Novotny, K. Sant, P. A. Holden, and E. Hoh, “Influence of tobacco product wastes in a protected coastal reserve adjacent to urbanization,” Marine Pollution Bulletin, vol. 199, Feb. 2024, Art. no. 115929, doi: 10.1016/J.MARPOLBUL.2023.115929.

[7]    Y. Wang, M. Fang, Z. Lou, H. He, Y. Guo, X. Pi, Y. Wang, K. Yin, and X. Fei, “Methane emissions from landfills differentially underestimated worldwide,” Nature Sustainability, vol. 7, no. 4, pp. 496–507, Mar. 2024, doi: 10.1038/ s41893-024-01307-9.

[8]    U. Nations, “THE 17 GOALS | Sustainable Development,” 2024. [Online]. Available: https://sdgs.un.org/goals

[9]    A. Gutiérrez and R. Palos, “Green chemistry: from wastes to value-added products,” Processes, vol. 11, no. 7, Jul. 2023, Art. no. 2131, doi: 10.3390/pr11072131.

[10]  J. Chen, J. He, Y. Zhang, J. Huang, Z. Chen, W. Zeng, X. Deng, and Q. Hu, “Effects of tobacco plant residue return on rhizosphere soil microbial community,” Annals of Microbiology, vol. 72, no. 1, pp. 1–15, Dec. 2022, doi: 10.1186/s13213-022-01699-z.

[11]  B. T. Nguyen, D. H. Dinh, N. B. Hoang, T. T. Do, P. Milham, D. Thi Hoang, and S. T. Cao, “Composted tobacco waste increases the yield and organoleptic quality of leaf mustard,” Agrosystems, Geosciences and Environment, vol. 5, no. 3, pp. 1–7, 2022, doi: 10.1002/agg2.20283.

[12]  J. B. Lisuma, A. J. Philip, P. A. Ndakidemi, and E. R. Mbega, “Assessing residue effects of tobacco nicotine on the yields, nutrient concentrations and nicotine uptake of a subsequent maize crop,” Field Crops Research, vol. 277, Mar. 2022, Art. no. 108401, doi: 10.1016/j.fcr.2021.108401.

[13]  F. G. Barla and S. Kumar, “Tobacco biomass as a source of advanced biofuels,” Biofuels, vol. 10, no. 3, pp. 335–346, May 2019, doi: 10.1080/17597269.2016.1242684.

[14]  B. Palupi, B. A. Fachri, I. Rahmawati, M. F. Rizkiana, and H. W. Amini, “Pretreatment of tobacco stems as bioethanol raw material: The effect of temperature and time using chemical method,” in American Institute of Physiscs Conference Proceedings, p. 20023, Oct. 2020, doi: 10.1063/5.0014558.

[15]  W. Wang and D. J. Lee, “Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review,” Bioresource Technology, vol. 339, 2021, Art. no. 125587, doi: 10.1016/ j.biortech.2021.125587.

[16]  M. A. Khan, B. Dharmalingam, S. Chuetor, Y. S. Cheng, and M. Sriariyanun, “Comprehensive review on effective conversion of lignocellulosic biomass to levulinic acid,” Biomass Conversion and Biorefinery, 2023, doi: 10.1007/s13399-023-04663-2.

[17]  A. Zoghlami and G. Paës, “Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis,” Frontiers in Chemistry, vol. 7, Dec. 2019, doi: 10.3389/fchem.2019.00874.

[18]  M. P. Gundupalli and M. Sriariyanun, “Recent trends and updates for chemical pretreatment of lignocellulosic biomass,” Applied Science and Engineering Progress, vol. 16, no. 1, pp. 1–4, Mar. 2023, doi: 10.14416/j.asep.2022.03.002.

[19]  V. T. de O. Santos, G. Siqueira, A. M. F. Milagres, and A. Ferraz, “Role of hemicellulose removal during dilute acid pretreatment on the cellulose accessibility and enzymatic hydrolysis of compositionally diverse sugarcane hybrids,” Industrial Crops and Products, vol. 111, pp. 722–730, Jan. 2018, doi: 10.1016/j.indcrop. 2017.11.053.

[20]  Q. Zheng, T. Zhou, Y. Wang, X. Cao, S. Wu, M. Zhao, H. Wang, M. Xu, B. Zheng, J. Zheng, and X. Guan, “Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis,” Scientific Reports, vol. 8, no. 1, pp. 1–9, Jan. 2018, doi: 10.1038/s41598-018-19517-5.

[21]  D. Sahoo, S. B. Ummalyma, A. K. Okram, A. Pandey, M. Sankar, and R. K. Sukumaran, “Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis,” Bioresource Technology, vol. 253, pp. 252–255, Apr. 2018, doi: 10.1016/j.biortech.2018.01.048.

[22]  S. Zhou, P. J. Weimer, R. D. Hatfield, T. M. Runge, and M. Digman, “Improving ethanol production from alfalfa stems via ambient-temperature acid pretreatment and washing,” Bioresource Technology, vol. 170, pp. 286–292, Oct. 2014, doi: 10.1016/j.biortech.2014.08.002.

[23]  M. M. Kininge and P. R. Gogate, “Intensification of alkaline delignification of sugarcane bagasse using ultrasound assisted approach,” Ultrasonics Sonochemistry, vol. 82, Jan. 2022, Art. no.  105870, doi: 10.1016/j.ultsonch.2021.105870.

[24]  R. Ningthoujam, P. Jangid, V. K. Yadav, D. K. Sahoo, A. Patel, and H. K. Dhingra, “Bioethanol production from alkali-pretreated rice straw: Effects on fermentation yield, structural characterization, and ethanol analysis,” Frontiers in Bioengineering and Biotechnology, vol. 11, 2023, doi: 10.3389/fbioe.2023.1243856.

[25]  L. Sharma, N. M. Alam, S. Roy, P. Satya, G. Kar, S. Ghosh, T. Goswami, and B. Majumdar, “Optimization of alkali pretreatment and enzymatic saccharification of jute (Corchorus olitorius L.) biomass using response surface methodology,” Bioresource Technology, vol. 368, Jan. 2023, Art. no. 128318, doi: 10.1016/ j.biortech.2022.128318.

[26]  P. Kooprasertying, W. Vanichsriratana, S. Sirisansaneeyakul, N. Laemsak, A. K. Tareen, Z. Ullah, P. Parakulsuksatid, and I. N. Sultan, “Ethanol production through optimized alkaline pretreated elaeis guineensis frond waste from Krabi Province, Thailand,” Fermentation, vol. 8, no. 11, Nov. 2022, Art. no. 648, doi: 10.3390/ fermentation8110648.

[27]  C. Ziv, Z. Zhao, Y. G. Gao, and Y. Xia, “Multifunctional roles of plant cuticle during plant-pathogen interactions,” Frontiers in Plant Science, vol. 9, Jul. 2018, doi: 10.3389/fpls. 2018.01088.

[28]  K. Monda, A. Mabuchi, J. Negi, and K. Iba, “Cuticle permeability is an important parameter for the trade-off strategy between drought tolerance and CO2 uptake in land plants,” Plant Signaling and Behavior, vol. 16, no. 6, 2021,   Art. no. 1908692, doi: 10.1080/15592324.2021. 1908692.

[29]  M. E. Himmel, S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust, “Biomass recalcitrance: Engineering plants and enzymes for biofuels production,” Science, vol. 315, no. 5813, pp. 804–807, Feb. 2007, doi: 10.1126/science.1137016.

[30]  K. Takamizawa, E. Ishikawa, K. Nakamura, and T. Futamura, “Bioethanol production from enzymatically saccharified lawn clippings from a golf course,” Journal of Material Cycles and Waste Management, vol. 15, no. 1, pp. 16–24, Jan. 2013, doi: 10.1007/s10163-012-0078-5.

[31]  L. Samuels, L. Kunst, and R. Jetter, “Sealing plant surfaces: Cuticular wax formation by epidermal cells,” Annual Review of Plant Biology, vol. 59, pp. 683–707, Jun. 2008, doi: 10.1146/annurev.arplant.59.103006.093219.

[32]  L. Kunst and L. Samuels, “Plant cuticles shine: Advances in wax biosynthesis and export,” Current Opinion in Plant Biology, vol. 12, no. 6, pp. 721–727, Dec. 2009, doi: 10.1016/j.pbi. 2009.09.009.

[33]  R. Simões, A. Rodrigues, S. Ferreira-Dias, I. Miranda, and H. Pereira, “Chemical composition of cuticular waxes and pigments and morphology of leaves of quercus suber trees of different provenance,” Plants, vol. 9, no. 9, pp. 1–15, Sep. 2020, doi: 10.3390/plants9091165.

[34]  T. M. Attard, C. R. McElroy, R. J. Gammons, J. M. Slattery, N. Supanchaiyamat, C. L. A. Kamei, O. Dolstra, L. M. Trindade, N. C. Bruce, S. J. McQueen-Mason, S. Shimizu, and A. J. Hunt, “Supercritical CO2 extraction as an effective pretreatment step for wax extraction in a miscanthus biorefinery,” ACS Sustainable Chemistry and Engineering, vol. 4, no. 11, pp. 5979–5988, Nov. 2016, doi: 10.1021/ acssuschemeng.6b01220.

[35]  G. Qi, F. Peng, L. Xiong, X. Lin, C. Huang, H. Li, X. Chen, and X. Chen, “Extraction and characterization of wax from sugarcane bagasse and the enzymatic hydrolysis of dewaxed sugarcane bagasse,” Preparative Biochemistry and Biotechnology, vol. 47, no. 3, pp. 276–281, Mar. 2017, doi: 10.1080/10826068.2016.1224246.

[36]  M. Paulraj Gundupalli, Y. S. Cheng, S. Chuetor, D. Bhattacharyya, and M. Sriariyanun, “Effect of dewaxing on saccharification and ethanol production from different lignocellulosic biomass,” Bioresource Technology, vol. 339, 2021, Art. no. 125596, doi: 10.1016/j.biortech.2021.125596.

[37]  M. P. Gundupalli, S. Chuetor, K. Cheenkachorn, K. Rattanaporn, P. L. Show, Y. S. Cheng, and M. Sriariyanun, “Interferences of waxes on enzymatic saccharification and ethanol production from lignocellulose biomass,” Bioengineering, vol. 8, no. 11, 2021, doi: 10.3390/bioengineering8110171.

[38]  Y. M. Gu, H. Kim, B.-I. Sang, and J. H. Lee, “Effects of water content on ball milling pretreatment and the enzymatic digestibility of corn stover,” Water-Energy Nexus, vol. 1, no. 1, pp. 61–65, Jun. 2018, doi: 10.1016/j.wen. 2018.07.002.

[39]  T. Scapini, C. Dalastra, A. F. Camargo, S. Kubeneck, T. A. Modkovski, S. L. A. Júnior, and H. Treichel, “Seawater-based biorefineries: A strategy to reduce the water footprint in the conversion of lignocellulosic biomass,” Bioresource Technology, vol. 344, no. Pt B, Jan. 2022, Art. no. 126325, doi: 10.1016/j.biortech. 2021.126325.

[40]  T. Tobin, R. Gustafson, R. Bura, and H. L. Gough, “Integration of wastewater treatment into process design of lignocellulosic biorefineries for improved economic viability,” Biotechnology for Biofuels, vol. 13, no. 1, pp. 1–16, Feb. 2020, doi: 10.1186/s13068-020-1657-7.

[41]  J. Zhao, Y. Yang, M. Zhang, and D. Wang, “Effects of post-washing on pretreated biomass and hydrolysis of the mixture of acetic acid and sodium hydroxide pretreated biomass and their mixed filtrate,” Bioresource Technology, vol. 339, Nov. 2021, Art. no. 125605, doi: 10.1016/ j.biortech.2021.125605.

[42]  G. Brodeur, E. Yau, K. Badal, J. Collier, K. B. Ramachandran, and S. Ramakrishnan, “Chemical and physicochemical pretreatment of lignocellulosic biomass: A review,” Enzyme Research, vol. 2011, no. 1, p. 17, 2011, doi: 10.4061/2011/ 787532.

[43]  C. O. Akinbile, “Environmental impact of landfill on groundwater quality and agricultural soils in Nigeria,” Soil and Water Research, vol. 7, no. 1, pp. 18–26, 2012, doi: 10.17221/4/2011-swr.

 [44] A. Siddiqua, J. N. Hahladakis, and W. A. K. A. Al-Attiya, “An overview of the environmental pollution and health effects associated with waste landfilling and open dumping,” Environmental Science and Pollution Research, vol. 29, no. 39, pp. 58514–58536, Aug. 2022, doi: 10.1007/s11356-022-21578-z.

[45]  S. Laaongnaun and S. Patumsawad, “Particulate matter characterization of the combustion emissions from agricultural waste products,” Heliyon, vol. 8, no. 8, Aug. 2022, doi: 10.1016/ j.heliyon.2022.e10392.

[46]  United States Environmental Protection Agency, “Quantifying methane emissions from landfilled food waste,” 2024. [Online]. Available: https://www.epa.gov/land-research/quantifying-methane-emissions-landfilled-food-waste

[47]  H. I. Abdel-Shafy, A. M. Ibrahim, A. M. Al-Sulaiman, and R. A. Okasha, “Landfill leachate: Sources, nature, organic composition, and treatment: An environmental overview,” Ain Shams Engineering Journal, vol. 15, no. 1, Jan. 2024, Art. no. 102293, doi: 10.1016/j.asej.2023. 102293.

[48]  Y. Athukorala and G. Mazza, “Supercritical carbon dioxide and hexane extraction of wax from triticale straw: Content, composition and thermal properties,” Industrial Crops and Products, vol. 31, no. 3, pp. 550–556, May 2010, doi: 10.1016/j.indcrop.2010.02.011.

[49]  C. Chatkaew, E. J. Panakkal, W. Rodiahwati, S. Kirdponpattara, S. Chuetor, M. Sriariyanun, and K. Cheenkachorn, “Effect of sodium hydroxide pretreatment on released sugar yields from pomelo peels for biofuel production,” in E3S Web of Conferences, vol. 302, 2021, doi: 10.1051/e3sconf/202130202015.

[50]  K. Cheenkachorn, E. J. Panakkal, C. Chatkaew, S. Chuetor, P. L. Show, H. El Bari, P. Venkatachalam, and M. Sriariyanun, “Effect of coupling dewaxing and chemical pretreatment on valorization of waxy fruit wastes,” Biomass Conversion and Biorefinery, 2024, doi: 10.1007/s13399-024-05501-9.

[51]  Miller Gail Lorenz, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959, doi: 10.1021/ac60147a030.

[52]  M. Sriariyanun, P. Mutrakulcharoen, S. Tepaamorndech, K. Cheenkachorn, and K. Rattanaporn, “A Rapid spectrophotometric method for quantitative determination of ethanol in fermentation products,” Oriental Journal of Chemistry, vol. 35, no. 2, pp. 744–750, Apr. 2019, doi: 10.13005/ojc/350234.

[53]  D. Knappert, H. Grethlein, and A. Converse, “Partial acid hydrolysis of cellulosic materials as a pretreatment for enzymatic hydrolysis,” Biotechnology and Bioengineering, vol. 22, no. 7, pp. 1449–1463, 1980, doi: 10.1002/bit.260220711.

[54]  V. Oriez, J. Peydecastaing, and P. Y. Pontalier, “Lignocellulosic biomass fractionation by mineral acids and resulting extract purification processes: Conditions, yields, and purities,” Molecules, vol. 24, no. 23, Nov. 2019, Art. no. 4273 doi: 10.3390/molecules24234273.

[55]  J. S. Kim, Y. Y. Lee, and T. H. Kim, “A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass,” Bioresource Technology, vol. 199, pp. 42–48, Jan. 2016, doi: 10.1016/j.biortech.2015.08.085.

[56]  A. Sluiter, B. Hames, R. O. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker, “Determination of structural carbohydrates and lignin in biomass,” National Renewable Energy Laboratory (NREL) Laboratory Analytical Procedures (LAP) for standard biomass analysis, 2012. [Online]. Available: http://www. nrel.gov/docs/gen/fy13/42618.pdf

[57]  J. Baruah, B. K. Nath, R. Sharma, S. Kumar, R. C. Deka, D. C. Baruah, and E. Kalita, “Recent trends in the pretreatment of lignocellulosic biomass for value-added products,” Frontiers in Energy Research, vol. 6, Dec. 2018, doi: 10.3389/fenrg.2018.00141.

[58]  K. Kucharska, P. Rybarczyk, I. Hołowacz, R. Łukajtis, M. Glinka, and M. Kamiński, “Pretreatment of lignocellulosic materials as substrates for fermentation processes,” Molecules, vol. 23, no. 11, Nov. 2018, Art. no. 2937, doi: 10.3390/molecules23112937.

[59]  J. M. Fuertez-Córdoba, J. C. Acosta-Pavas, and Á. A. Ruiz-Colorado, “Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups,” 2024. [Online]. Available: https://www.redalyc.org/journal/496/ 49671325021/html/

[60]  C. Cui, C. Yan, A. Wang, C. Chen, D. Chen, S. Liu, L. Li, Q. Wu, Y. Liu, Y. Liu, G. Nie, X. Jiang, S. Nie, S. Yao, and H. Yu, “Understanding the inhibition mechanism of lignin adsorption to cellulase in terms of changes in composition and conformation of free enzymes,” Sustainability (Switzerland), vol. 15, no. 7, Mar. 2023, Art. no. 6057, doi: 10.3390/su15076057.

[61]  K. Rajan and D. J. Carrier, “Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis,” Biomass and Bioenergy, vol. 62, pp. 222–227, 2014, doi: 10.1016/j.biombioe.2014.01.013.

[62]  I. ul Haq, A. Nawaz, B. Liaqat, Y. Arshad, X. Fan, M. Sun, X. Zhou, Y. Xu, F. Akram, and K. Jiang, “Pilot scale elimination of phenolic cellulase inhibitors from alkali pretreated wheat straw for improved cellulolytic digestibility to fermentable saccharides,” Frontiers in Bioengineering and Biotechnology, vol. 9, Mar. 2021, doi: 10.3389/fbioe.2021.658159.

[63]  L. J. Jönsson and C. Martín, “Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects,” Bioresource Technology, vol. 199, pp. 103–112, Jan. 2016, doi: 10.1016/j.biortech. 2015.10.009.

[64]  L. P. Johannes and T. D. Xuan, “Comparative analysis of acidic and alkaline pretreatment techniques for bioethanol production from perennial grasses,” Energies, vol. 17, no. 5, Feb. 2024, Art. no. 1048, doi: 10.3390/en17051048.

[65]  Z. Kádár, N. Schultz-Jensen, J. S. Jensen, M. A. T. Hansen, F. Leipold, and A. B. Bjerre, “Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment,” Biomass and Bioenergy, vol. 81, pp. 26–30, Oct. 2015, doi: 10.1016/j.biombioe.2015.05.012.

[66]  K. Rattanaporn, P. Tantayotai, T. Phusantisampan, P. Pornwongthong, and M. Sriariyanun, “Organic acid pretreatment of oil palm trunk: Effect on enzymatic saccharification and ethanol production,” Bioprocess and Biosystems Engineering, vol. 41, no. 4, pp. 467–477, 2018, doi: 10.1007/s00449-017-1881-0.

[67]  Y. Mengesha, A. Tebeje, and B. Tilahun, “A review on factors influencing the fermentation process of Teff (Eragrostis teff) and other cereal-based ethiopian injera,” International Journal of Food Science, 2022, doi: 10.1155/2022/4419955.

[68]  I. P. Wood, A. Elliston, P. Ryden, I. Bancroft, I. N. Roberts, and K. W. Waldron, “Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay,” Biomass and Bioenergy, vol. 44, pp. 117–121, Sep. 2012, doi: 10.1016/j.biombioe.2012.05.003.

[69]  R. Banu J, S. Sugitha, S. Kavitha, Y. Kannah R, J. Merrylin, and G. Kumar, “Lignocellulosic biomass pretreatment for enhanced bioenergy recovery: Effect of lignocelluloses recalcitrance and enhancement strategies,” Frontiers in Energy Research, vol. 9, Nov. 2021, Art no. 646057, doi: 10.3389/fenrg.2021.646057.

[70]  J. K. Xu and R. C. Sun, “Recent advances in alkaline pretreatment of lignocellulosic biomass,” Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, pp. 431–459, 2016, doi: 10.1016/B978-0-12-802323-5.00019-0.

[71]  C. Bioprocess, “Alkali pretreatment of biomass - Bioprocess development,” 2024. [Online]. Available: https://www.celignis.com/alkali-pretreatment.php

[72]  G. Brodeur, E. Yau, K. Badal, J. Collier, K. B. Ramachandran, and S. Ramakrishnan, “Chemical and physicochemical pretreatment of lignocellulosic biomass: A review,” Enzyme Research, 2011, doi: 10.4061/2011/787532.

[73]  F. Ebrahimian, J. F. M. Denayer, A. Mohammadi, B. Khoshnevisan, and K. Karimi, “A critical review on pretreatment and detoxification techniques required for biofuel production from the organic fraction of municipal solid waste,” Bioresource Technology, vol. 368, Jan. 2023, Art no. 128316, doi: 10.1016/j.biortech.2022.128316.

[74]  C. Chung, M. Lee, and E. K. Choe, “Characterization of cotton fabric scouring by FT-IR ATR spectroscopy,” Carbohydrate Polymers, vol. 58, no. 4, pp. 417–420, Dec. 2004, doi: 10.1016/j.carbpol.2004.08.005.

[75]  L. Chen, J. Li, M. Lu, X. Guo, H. Zhang, and L. Han, “Integrated chemical and multi-scale structural analyses for the processes of acid pretreatment and enzymatic hydrolysis of corn stover,” Carbohydrate Polymers, vol. 141, pp. 1–9, May 2016, doi: 10.1016/j.carbpol.2015.12.079.

[76]  R. Bodirlau, C. A. Teaca, and I. Spiridon, “Influence of ionic liquid on hydrolyzed cellulose material: FT-IR spectroscopy and TG-DTG-DSC analysis,” International Journal of Polymer Analysis and Characterization, vol. 15, no. 7, pp. 460–469, Jan. 2010, doi: 10.1080/ 1023666X.2010.510112.

[77]  P. Binod, K. Satyanagalakshmi, R. Sindhu, K. U. Janu, R. K. Sukumaran, and A. Pandey, “Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse,” Renewable Energy, vol. 37, no. 1, pp. 109–116, Jan. 2012, doi: 10.1016/j.renene. 2011.06.007.

[78]  V. T. T. Huong, T. Atjayutpokin, P. Chinwatpaiboon, S. M. Smith, S. Boonyuen, and A. Luengnaruemitchai, “Two-stage acid-alkali pretreatment of vetiver grass to enhance the subsequent sugar release by cellulase digestion,” Renewable Energy, vol. 195, pp. 755–765, Aug. 2022, doi: 10.1016/j.renene.2022.06.069.

[79]  J. G. Smith, “Mass Spectrometry and Infrared Spectroscopy,” in Organic Chemistry, 3rd ed., M. Lange, Ed. New York: McGraw-Hill, p. 480, 2011.

[80]  F. Dai, Q. Zhuang, G. Huang, H. Deng, and X. Zhang, “Infrared spectrum characteristics and quantification of OH groups in coal,” ACS Omega, vol. 8, no. 19, pp. 17064–17076, May 2023, doi: 10.1021/acsomega.3c01336.

[81]  X. Li, Y. Wei, J. Xu, N. Xu, and Y. He, “Quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on ftir macro- and micro-spectroscopy coupled with chemometrics,” Biotechnology for Biofuels, vol. 11, no. 1, pp. 1–16, Sep. 2018, doi: 10.1186/s13068-018-1251-4.

[82]  C. M. Popescu, M. C. Popescu, and C. Vasile, “Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy,” International Journal of Biological Macromolecules, vol. 48, no. 4, pp. 667–675, May 2011, doi: 10.1016/j.ijbiomac. 2011.02.009.

Full Text: PDF

DOI: 10.14416/j.asep.2024.07.010

Refbacks

  • There are currently no refbacks.