Page Header

Enhancing Enzymatic Hydrolysis of Sugarcane Leaves through Sulfonation-Based Pretreatment with a Reusable Organic Solvent under Mild Conditions for Bioethanol Production

Apinya Kaoloun, Prapakorn Tantayotai, Lueacha Tabtimmai, Nagaraju Kottam, Atthasit Tawai

Abstract


Efficient pretreatment of lignocellulosic biomass is vital for enhancing bioconversion efficiency and reducing production costs sustainably. This study evaluates a sulfonation-based pretreatment strategy employing a reusable organic co-solvent system consisting of formic acid and methanesulfonic acid (MSA) for the pretreatment of sugarcane leaves. Comparative experiments were conducted with and without MSA under fixed conditions of 20% formic acid, 90 °C, and 90 min. Results indicated that the inclusion of MSA significantly enhanced sugar concentration by 1.73-fold and increased sugar yield by 70%. Optimization of pretreatment conditions was performed using response surface methodology (RSM) and a genetic algorithm (GA), with the MSA concentration maintained at 5%. Formic acid concentration, temperature, and pretreatment time were varied to determine optimal conditions. RSM identified optimal conditions at 27.5% formic acid, 81 °C, and 102 min, whereas GA optimization yielded 20% formic acid, 89 °C, and 177 minutes. The corresponding sugar concentrations were 29.4 mg/mL for RSM and 30.49 mg/mL for GA. Subsequent enzymatic hydrolysis and ethanol fermentation produced ethanol concentrations of 12.6 mg/mL under RSM conditions and 12.0 mg/mL under GA conditions. Despite GA optimization utilizing 7.5% less formic acid, ethanol yields were not significantly different compared to RSM results; however, GA required a longer processing time and slightly higher temperature. These findings demonstrate the potential of sulfonation-based pretreatment for cost-effective and environmentally sustainable bioethanol production. However, the optimization was limited to mild pretreatment conditions, and the results were validated only at the laboratory scale.

Keywords



[1]    M. Mujtaba, L. F. Fraceto, M. Fazeli, S. Mukherjee, S. M. Savassa, G. A. de Medeiros, A. E. S. Pereira, S. D. Mancini, J. Lipponen, and F. Vilaplana, “Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics,” Journal of Cleaner Production, vol. 402, Mar. 2023, Art. no. 136815, doi: 10.1016/j.jclepro.2023.136815.

[2]    V. Ashokkumar, R. Venkatkarthick, S. Jayashree, S. Chuetor, S. Dharmaraj, G. Kumar, W. H. Chen, and C. Ngamcharussrivichai, “Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts-A critical review,” Bioresource Technology, vol. 344, Oct. 2021, Art. no. 126195, doi: 10.1016/j.biortech. 2021.126195.

[3]    S. Areeya, E.J. Panakkal, M. Sriariyanun, T. Kangsadan, A. Tawai, S. Amornraksa, U.W. Hartley, and P. Yasurin, “A review on chemical pretreatment of lignocellulosic biomass for the production of bioproduct: Mechanism, challenges and applications,” Applied Science and Engineering Progress, vol. 16, Sep. 2023, Art. no. 6767, doi: 10.14416/j.asep.2023.02.008.

[4]    S. Areeya, E.J. Panakkal, P. Kunmanee, A. Tawai, S. Amornraksa, M. Sriariyanun, A. Kaoloun, N. Hartini, Y.S. Cheng, M. Kchaou, S. Dasari, and M.P. Gundupalli, “A review of sugarcane biorefinery: From waste to value-added products,” Applied Science and Engineering Progress, vol. 17, Sep. 2024, Art. no. 7402, doi: 10.14416/j.asep.2024.06.004.

[5]    G. Song, M. Madadi, X. Meng, C. Sun, M. Aghbashlo, F. Sun, A. J. Ragauskas, M. Tabatabaei, and A. Ashori, “Double in-situ lignin modification in surfactant-assisted glycerol organosolv pretreatment of sugarcane bagasse towards efficient enzymatic hydrolysis,” Chemical Engineering Journal, vol. 481, Feb. 2024, Art. no. 148713, doi: 10.1016/j.cej.2024. 148713.

[6]    P. Mutrakulcharoen, P. Pornwongthong, S. A. Sahithi, T. Phusantisampan, A. Tawai, and M. Sriariyanun “Improvement of potassium permanganate pretreatment by enzymatic saccharification of rice straw for production of biofuels,” E3S Web of Conferences, vol. 302, Sep. 2021, Art. no. 02013, doi: 10.1051/e3sconf/ 202130202013.

[7]    C. Huang, X. Jiang, X. Shen, J. Hu, W. Tang, X. Wu, A.J. Ragauskas, H. Jameel, X. Meng, and Q. Yong, “Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics,” Renewable and Sustainable Energy Reviews, vol. 154, Feb. 2022, Art. no. 111822, doi: 10.1016/j.rser.2021.111822.

[8]    G. Qi, L. Xiong, L. Tian, M. Chen, X. Luo, C. Huang, H. Li, and X. Chen, “Ammonium sulfite pretreatment of wheat straw for efficient enzymatic saccharification,” Sustainable Energy Technologies and Assessments, vol. 29, pp. 12–18, Oct. 2018, doi: 10.1016/j.seta.2018.06.014.

[9]    N. Chen, K. Jiang, M. Zhao, C. Zhang, Y. Jin, and W. Wu, “Pretreatment process of lignocellulosic biomass: A review of pseudo-lignin formation,” Biomass and Bioenergy, vol. 188, Sep. 2024, Art. no. 107339, doi: 10.1016/ j.biombioe.2024.107339.

[10] M. Hu, X. Lv, Y. Wang, L. Ma, Y. Zhang, and H. Dai, “Recent advance on lignin-containing nanocelluloses: The key role of lignin,” Carbohydrate Polymers, vol. 343, Nov. 2024, Art. no. 122460, doi: 10.1016/j.carbpol.2024. 122460.

[11] M. N. F. Norrrahim, R. A. Ilyas, N. M. Nurazzi, M. S. A. Rani, M. S. N. Atikah, and S. S. Shazleen, “Chemical pretreatment of lignocellulosic biomass for the production of bioproducts: An overview,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 588–605, Jul. 2021, doi: 10.14416/j.asep.2021.07.004.

[12] H. Chen, L. Jiang, Y. Cheng, J. Lu, Y. Lv, J. Yan, and H. Wang, “Improving enzymatic hydrolysis efficiency of corncob residue through sodium sulfite pretreatment,” Applied microbiology and biotechnology, vol. 103, pp. 7795–7804, Aug. 2019, doi: 10.1007/s00253-019-10050-7.

[13] M. Mennani, M. Kasbaji, A.A. Benhamou, A. Boussetta, E. H. Ablouh, O. Bayousfi, N. Grimi, and A. Moubarik, “Effects of direct sulfonation on the catalytic activity and recyclability of novel lignin-based solid acid catalysts from agri-food waste,” International Journal of Biological Macromolecules, vol. 230, Mar. 2023, Art. no. 123242, doi: 10.1016/j.ijbiomac.2023.123242.

[14] P. Sangsiri, N. Laosiripojana, W. Laosiripojana, and P. Daorattanachai, “Activity of a sulfonated carbon-based catalyst derived from organosolv lignin toward esterification of stearic acid under near-critical alcohol conditions,” ACS Omega, vol. 7, pp. 40025–40033, Oct. 2022, doi: 10.1021/acsomega.2c04693.

[15] J. M. Fonseca, L. Spessato, L. H. Crespo, M. C. Silva, C. da Silva, T.L. Silva, A.L. Cazetta, V. C. Almeida, “Optimization of oleic acid esterification via surface response methodology using sulfonated-carbon catalyst obtained from crambe meal,” Green Technologies and Sustainability, vol. 2, Sep. 2024, Art. no. 100109, doi: 10.1016/j.grets.2024.100109.

[16] Z. Al-Hamamre, M. Alnaief, J. Yamin, I. Altarawneh, A. Sandouqa, R. Hammouri, A. Nasr, A. Maleki, and R. A. Shawabkeh, “Synthesis, characterization, and performance evaluation of different sulfonated lignin-based carbon catalysts for upgrading waste vegetable oil to biodiesel,” Energy Conversion and Management, vol. 325, Feb. 2025, Art. no. 119381, doi: 10.1016/j.enconman.2024.119381.

[17] K. Wang, Z. Shen, X. Wang, Z. Li, and S. Cheng, “Advances in enhancing the enzymatic saccharification process of lignocellulosic biomasses for bioethanol production,” Biomass and Bioenergy, vol. 191, Dec. 2024, Art. no. 107450, doi: 10.1016/j.biombioe.2024.107450.

[18] G. H. Delmas, J. H. Banoub, and M. Delmas, “Lignocellulosic biomass refining: A review promoting a method to produce sustainable hydrogen, fuels, and products,” Waste and Biomass Valorization, vol. 13, pp. 2477–2491, Nov. 2021, doi: 10.1007/s12649-021-01624-6.

[19] K. Zhang, Z. Pei, and D. Wang, “Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review,” Bioresource Technology, vol. 199, pp. 21–33, Jan. 2016, doi: 10.1016/j.biortech.2015.08.102.

[20] P. Kulkarni, “Methane sulphonic acid is green catalyst in organic synthesis,” Oriental Journal of Chemistry, vol. 31, pp. 447–451, Jan. 2015, doi: 10.13005/ojc/310154.

[21] E. J. Panakkal, M. Sriariyanun, J. Ratanapoompinyo, P. Yasurin, K. Cheenkachorn, W. Rodiahwati, and P. Tantayotai, “Influence of sulfuric acid pretreatment and inhibitor of sugarcane bagasse on the production of fermentable sugar and ethanol,” Applied Science and Engineering Progress, vol. 15, no. 1, 2022, Art. no. 5238, doi: 10.14416/j.asep.2021.07.006.

[22] R. Wu, Y. Li, X. Wang, Y. Fu, M. Qin, and Y. Zhang, “In-situ lignin sulfonation for enhancing enzymatic hydrolysis of poplar using mild organic solvent pretreatment,” Bioresource Technology, vol. 369, Feb. 2023, Art. no. 128410, doi: 10.1016/j.biortech.2022.128410.

[23] M. A. Arefin, F. Rashid, and A. Islam, “A review of biofuel production from floating aquatic plants: An emerging source of bio‐renewable energy,” Biofuels, Bioproducts and Biorefining, vol. 15, pp. 574–591, Jan. 2021, doi: 10.1002/ bbb.2180.

[24] C. Kuptametee, Z. H. Michalopoulou, and N. Aunsri, “A review of efficient applications of genetic algorithms to improve particle filtering optimization problems,” Measurement, vol. 224, Jan. 2024, Art. no. 113952, doi: 10.1016/j. measurement.2023.113952.

[25] S. Chuetor, E. J. Panakkal, T. Ruensodsai, K. Cheenkachorn, S. Kirdponpattara, Y. S. Cheng, and M. Sriariyanun, “Improvement of enzymatic saccharification and ethanol production from rice straw using recycled ionic liquid: The effect of anti-solvent mixture,” Bioengineering , vol. 9, Mar. 2022, Art. no. 115, doi: 10.3390/ bioengineering9030115.

[26] C. Hatzis, C. Riley, and G. Philippidis, “Detailed material balance and ethanol yield calculations for the biomass-to-ethanol conversion process,” in Seventeenth Symposium on Biotechnology for Fuels and Chemicals, C. E. Wyman and B. H. Davison, Eds. NJ: Humana Press, pp. 443–459, 1996, doi: 10.1007/978-1-4612-0223-3_41.

[27] M. Khadraoui, S. Nader, R. Khiari, N. Brosse, L. Bergaoui, and E. Mauret, “Effectiveness of sulfonation to produce lignin-containing cellulose micro/nanofibrils (LCM/NF) by grinding,” Cellulose, vol. 30, pp. 815–832, Nov. 2022, doi: 10.1007/s10570-022-04910-1.

[28] X. Li and Y. Zheng, “Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects,” Biotechnology advances, vol. 35, pp. 466–489, Jul. 2017, doi: 10.1016/ j.biotechadv.2017.03.010.

[29] X. Zhao, Z. Zhong, C. Gan, F. Yan, and S. Zhang, “What is the appropriate pricing mechanism for China’s renewable energy in a new era?,” Computers & Industrial Engineering, vol. 163, Jan. 2022, Art. no. 107830, doi: 10.1016/j.cie.2021.107830.

[30] M. A. Khan, E. J. Panakkal, M. Sriariyanun, M. P. Gundupalli, S. Roddecha, and K. Cheenkachorn, “Dewaxing and post-pretreatment washing: Impact on sugar and ethanol yields from tobacco residue,” Applied Science and Engineering Progress, vol. 14, no. 4, 2024, Art. no. 7495, doi: 10.14416/j.asep.2024. 07.010.

[31] D. Jose, A. Tawai, D. Divakaran, M. Sriariyanun, V. Phakeenuya, Y. S. Cheng, and P. Tantayotai, “Influence of acetic acid pretreatment and its residue on bioethanol and biogas production from water hyacinth,” Applied Science and Engineering Progress, vol. 17, no. 3, 2024, Art. no. 7326, doi: 10.14416/j.asep.2024. 02.001.

Full Text: PDF

DOI: 10.14416/j.asep.2025.06.009

Refbacks

  • There are currently no refbacks.