Page Header

Cleaner Environment Approach by the Utilization of Low Calcium Wood Ash in Geopolymer Concrete

Kadarkarai Arunkumar, Muthiah Muthukannan, Arunachalam Suresh Kumar, Arunasankar Chithambar Ganesh, Rangaswamy Kanniga Devi


The waste disposal issues were the most severe problems that could cause global warming, which depletes the environment. The research hypothesis was to find the suitability and sustainability of utilizing the waste by-products in the invention of green geopolymer concrete to eliminate the tremendous effects caused by the wastes. Due to the increased demand for fly ash in recent years, the requirement of high alkaline activators, and elevated temperature for curing, there was a research gap to find an alternative binder. The novelty of this research was to utilize the waste wood ash, which is available plenty in nearby hotels and has an inbuilt composition of high potassium that can act as a self alkaline activator. Waste wood ash procured from the local hotels was replaced with fly ash by 0 to 100% at 10% intervals. The setting and mechanical characteristics were found on the prolonged ages to understand the influence of waste wood ash. Microstructural characterization was found using Scanning Electron Microscope and X-Ray Diffraction Analysis to define the impact of waste wood ash in the microstructure. The research findings showed that replacing 30% waste wood ash with fly ash attained better performance in setting properties and all mechanical parameters. The obtained optimum mix could provide the best alternative for fly ash in geopolymer to eliminate the economic thrust by the requirement of alkaline activators and deploy the environmental impact caused by the waste wood ash.


Full Text: PDF

DOI: 10.14416/j.asep.2021.06.005


  • There are currently no refbacks.