Page Header

Watermelon (Citrullus lanatus) Rind Extract-Mediated Synthesis of Manganese (II, III) Oxide Nanoparticles for Potential Theranostic Applications

Gelo P. Zaragosa, Carlo Nonato D. Ilem, Joel Garcia

Abstract


Plant extracts and microorganisms are widely utilized for the green synthesis of Mn3O4 nanoparticles. In this study, green synthesis of Mn3O4 nanoparticles for theranostic applications was performed using watermelon (Citrullus lanatus) rind extract as a reducing and stabilizing agent. The UV-visible absorption of the nanoparticles at 196 nm is associated with the surface plasmon resonance of Mn3O4 nanoparticles. FT-IR spectra presented the key chemical functional groups associated with the Mn–O vibrations and phytoconstituents of the watermelon rind extract. XRD analysis revealed the single-phase hausmannite crystalline structure of the Mn3O4 nanoparticles with an average crystallite size of 35.2 nm. SEM and TEM images of the synthesized Mn3O4 nanoparticles showed quasi-spherical shapes and a core size of 52.90 ± 8.19 nm and 35.89 ± 0.83 nm, respectively. EDS analysis indicated that the nanoparticles mainly comprised Mn, O, and C. Furthermore, the radical scavenging activity through the DPPH assay showed that the nanoparticles have significant antioxidant therapeutic potential, with an IC50 value of 20.62 ± 0.69 ppm. T1 and T2 relaxivities of Mn3O4 nanoparticles were 5.34 ± 0.11 mM–1s–1 and 63.47 ± 0.60 mM–1s–1, respectively, when measured at a clinically relevant field strength of 1.5 T, confirming their suitability as an MRI contrast agent for diagnostic imaging. These findings imply that the green synthesized Mn3O4 nanoparticles could be used as a theranostic agent for MRI applications.

Keywords



[1] P. C. Mishra and A. K. Giri, “Green Chemistry,” in Advances in Environmental Engineering and Green Technologies Book Series. United States: Engineering Science Reference, 2018, pp. 152– 161, doi: 10.4018/978-1-5225-3126-5.ch009.

 

[2] M. M. Martin and R. E. Sumayao Jr., “Facile green synthesis of silver nanoparticles using Rubus rosifolius Linn aqueous fruit extracts and its characterization,” Applied Science and Engineering Progress, vol. 15, no. 3, 2021, Art. no. 5511, doi: 10.14416/j.asep.2021.10.011.

 

[3] B. Ashok, M. Umamahesh, N. Hariram, S. Siengchin, and A.V. Rajulu, “Modification of waste leather trimming with in situ generated silver nanoparticles by one step method,” Applied Science and Engineering Progress, vol. 14, no. 2, pp. 236–246, Jan. 2021, doi: 10.14416/j.asep.2021.01.007.

 

[4] P. Tobarameekul, S. Sangsuradet, N. N. Chat, and P. Worathanakul, “Enhancement of CO2 adsorption containing Zinc-ion-exchanged Zeolite NaA synthesized from rice husk ash,” Applied Science and Engineering Progress, vol. 15, no. 1, Nov. 2020, Art. no. 3640, doi: 10.14416/j.asep.2020.11.006.

 

[5] M. Jayandran, M. Haneefa and V. Balasubramanian, “Green synthesis and characterization of Manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity,” Journal of Applied Pharmaceutical Science, vol. 5, no. 12, pp. 105–110, 2015, doi: 10.7324/JAPS.2015.501218.

 

[6] V. Hoseinpour, M. Souri, and N. Ghaemi, “Green synthesis, characterisation, and photocatalytic activity of manganese dioxide nanoparticles,” Micro & Nano Letters, vol. 13, pp. 1560–1563, Nov. 2018, doi: 10.1049/mnl.2018.5008.

 

[7] A. Diallo, N. Tandjigora, S. Ndiaye, T. Jan, I. Ahmad, and M. Maaza, “Green synthesis of single phase hausmannite Mn3O4 nanoparticles via Aspalathus linearis natural extract,” SN Applied Sciences, vol. 3, no. 562, Apr. 2021, doi: 10.1007/s42452-021-04550-3.

 

[8] J. K. Sharma, P. Srivastava, S. Ameen, M. S. Akhtar, G. Singh, and S. Yadava, “Azadirachta indica plant-assisted green synthesis of Mn3O4 nanoparticles: Excellent thermal catalytic performance and chemical sensing behavior,” Journal of Colloid and Interface Science, vol. 472, pp. 220–228, Jun. 2016, doi: 10.1016/j. jcis.2016.03.052.

 

[9] T. V. Tran, D. T. Nguyen, P. S. Kumar, A. T. Din, A. S. Qazaq, and D.-V. N. Vo, “Green synthesis of Mn3O4 nanoparticles using Costus woodsonii flowers extract for effective removal of malachite green dye,” Environmental Research, vol. 214, Nov. 2022, Art. no. 113925, doi: 10.1016/j.envres.2022.113925.

 

[10] J. Sackey, M. Akbari, R. Morad, A. K. H. Bashir, N. M. Ndiaye, N. Matinise, and M. Maaza, “Molecular dynamics and bio-synthesis of Phoenix dactylifera mediated Mn3O4 nanoparticles: Electrochemical application,” Journal of Alloys and Compounds, vol. 854, Feb. 2021, Art. no. 156987, doi: 10.1016/j.jallcom.2020.156987.

 

[11] T. Zahra, K. S. Ahmad, C. Zequine, A. G. Thomas, M. A. Malik, R.K. Gupta, and D. Ali, “Preparation of organo-stabilized Mn3O4 nanostructures as an electro-catalyst for clean energy generation,” Journal of Electronic Materials, vol. 50, pp. 5150–5160, Jul. 2021, doi: 10.1007/s11664-021-09054-9.

 

[12] J. P. Z. Gonçalves, J. Seraglio, D. L. P. Macuvele, N. Padoin, C. Soares, and H. G. Riella, “Green synthesis of manganese based nanoparticles mediated by Eucalyptus robusta and Corymbia citriodora for agricultural applications,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 636, Mar. 2022, Art. no. 128180, doi: 10.1016/j.colsurfa.2021. 128180.

 

[13] A. S. Prasad, “Green synthesis of nanocrystalline manganese (II, III) oxide,” Materials Science in Semiconductor Processing, vol. 71, pp. 342–347, Nov. 2017, doi: 10.1016/j.mssp.2017.08.020.

 

[14] M. Mushtaq, B. Sultana, H. N. Bhatti, and M. Asghar, “RSM based optimized enzyme-assisted extraction of antioxidant phenolics from underutilized watermelon (Citrullus lanatus Thunb.) rind,” Journal of Food Science and Technology, vol. 52, no. 8, pp. 5048–5056, Sep. 2014, doi: 10.1007/s13197-014-1562-9.

 

[15] C. Prasad, S. Gangadhara, and P. Venkateswarlu, “Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity,” Applied Nanoscience, vol. 6, pp. 797–802, Aug. 2015, doi: 10.1007/s13204- 015-0485-8.

 

[16] A. H. Hashem, G. S. El-Sayyad, A. A. Al-Askar, S. A. Marey, H. AbdElgawad, K. A. Abd-Elsalam, and E. Saied, “Watermelon rind mediated biosynthesis of bimetallic selenium-silver nanoparticles: Characterization, antimicrobial and anticancer activities,” Plants, vol. 12, no. 18, Sep. 2023, Art. no. 3288, doi: 10.3390/plants12183288.

 

[17] LTS Research Laboratories, “Safety Data Sheet: Manganese Oxide,” 2015. [Online]. Available: https://www.ltschem.com/msds/Mn3O4.pdf

 

[18] J. Garcia, S. Liu, and A. Louie, “Biological effects of MRI contrast agents: Gadolinium retention, potential mechanisms, and a role for phosphorus,” Philosophical Transactions of the Royal Society A, vol. 375, Nov. 2017, doi: 10.1098/rsta.2017.0180.

 

[19] J. Jeevanandam, A. Barhoum, Y. Chan, A. Dufresne, and M. Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity, and regulations,” Beilstein Journal of Nanotechnology, vol. 9, no. 1, pp. 1050–1074, Apr. 2018, doi: 10.3762/ bjnano.9.98.

 

[20] Z. Ni, Z. Wang, L. Sun, B. Li, and Y. Zhao, “Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities,” Materials Science and Engineering: C, vol. 41, pp. 249–254, Aug. 2014, doi: 10.1016/j.msec. 2014.04.059.

 

[21] R. Lakshmipathy, B. Palakshi, N. C. Sarada, K. Chidambaram, and S. Khadeer, “Watermelon rind-mediated green synthesis of noble palladium nanoparticles: Catalytic application,” Applied Nanoscience, vol. 5, no. 2, pp. 223–228, Apr. 2014, doi: 10.1007/s13204-014-0309-2.

 

[22] A. Asaikkutti, P.S. Bhavan, K. Vimala, M. Karthik, and P. Cheruparambath, “Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii,” Journal of Trace Elements in Medicine and Biology, vol. 35, pp. 7–17, May 2016, doi: 10.1016/j. jtemb.2016.01.005.

 

[23] L. M. Sanchez, D. A. Martin, V. A. Alvarez, and J. S. Gonzalez, “Polyacrylic acid-coated iron oxide magnetic nanoparticles: The polymer molecular weight influence,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 543, pp. 28–37, Apr. 2018, doi: 10.1016/j.colsurfa.2018.01.050.

 

[24] Y.Shen, F. L. Goerner, C. Snyder, J. N. Morelli, D. Hao, D. Hu, X. Li, and V. M. Runge, “T1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 T,” Investigative Radiology, vol. 50, no. 5, pp. 330–338, May 2015, doi: 10.1097/ rli.0000000000000132.

 

[25] E. Momin, J. Choi, K. Yuan, H. Zaidi, J. Kim, M. Park, N. Lee, M. T. McMahon, A. Quinones- Hinojosa, J. W. M. Bulte, T. Hyeon, and A. A. Gilad, “Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and mri tracking of adipose-derived mesenchymal stem cells,” Journal of the American Chemical Society, vol. 133, no. 9, pp. 2955–2961, Feb. 2011, doi: 10.1021/ja1084095.

 

[26] K. An, S. G. Kwon, M. Park, H. B. Na, S.-I. Baik, J. H. Yu, D. Kim, J. S. Son, Y. W. Kim, I. C. Song, W. K. Moon, H. M. Park, and T. Hyeon, “Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching,” Nano Letters, vol. 8, no. 12, pp. 4252–4258, Nov. 2008, doi: 10.1021/nl8019467.

 

[27] W. Zhan, W. Zhan, H. Li, X. Xu, X. Cao, S. Zhu, J. Liang, and X. Chen, “In vivo dual-modality fluorescence and magnetic resonance imaging-guided lymph node mapping with good biocompatibility manganese oxide nanoparticles,” Molecules, vol. 22, no. 12, p. 2208, Dec. 2017, doi: 10.3390/molecules22122208.

Full Text: PDF

DOI: 10.14416/j.asep.2024.02.002

Refbacks

  • There are currently no refbacks.