NanoBiofertilizer and its Application in Sustainable Agriculture, Crop Specific Nutrients Delivery and Environmental Sustainability: A Review
Abstract
Probiotic bacteria are increasingly in demand in the food and feed industries. A growing population and finite resources require efficient ways to maximize yields. Probiotic bacteria are gaining popularity in the food and feed industries due to their unique combination of benefits and values, which include consumer health interests, sustainability values, food innovation, and potential business opportunities. The use of conventional fertilizers can increase crop production but can also cause runoff and toxicity issues. A nanobiofertilizer offers improved crop nutrition and reduces application rates. Slow-release properties minimize environmental losses while nanoscale particle size enhances nutrient absorption. If nanobiofertilizers are closely regulated, they can boost yields without destroying the soil and aquatic ecosystems. In recent years, nanobiofertilizers have received considerable attention. Plant extracts and microbes are used in green synthesis to produce eco-friendly nanoparticles. Crop-specific nutrient release can be tailored using modified nanoparticle surfaces. Controlled nutrient delivery is achieved by smart nanocarrier systems that adapt to changing soil moisture, pH, and microbial activity. Combined applications of plant growth-promoting rhizobacteria have been reported that they can enhance crop growth in synergy. This review presents an overview of the most recent studies on nanobiofertilizers, as well as the issues connected with their environmental implications, safety, and regulation, presenting a roadmap for the responsible use of nanobiofertilizers, which aims to enhance food security while protecting the environment for future generations.
Keywords
[1] FAO, “The future of food and agriculture – trends and challenges,” Annual Report, vol. 296, pp. 1–180, 2017.
[2] H. Chhipa, “Nanofertilizers and nanopesticides for agriculture,” Environmental Chemistry Letters, vol. 15, pp. 15–22, 2017.
[3] B. Z. Butt and I. Naseer, “Nanofertilizers,” in Nanoagronomy. Cham: Springer, pp. 125–152, 2020.
[4] A. Ostadi, A. Javanmard, M. Amani Machiani, M. R. Morshedloo, M. Nouraein, F. Rasouli, and F. Maggi, “Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Menthax piperita L.,” Industrial Crops and Products, vol. 148, 2020, Art. no. 112290.
[5] T. Chatzistathis, D. Fanourakis, S. Aliniaeifard, A. Kotsiras, C. Delis, and G. Tsaniklidis, “Leaf age-dependent effects of boron toxicity in two Cucumis melo varieties,” Agronomy, vol. 11, p. 759, 2021.
[6] K. S. Subramanian, A. Manikandan, M. Thirunavukkarasu, and C. S. Rahale, “Nanofertilizers for balanced crop nutrition,” in Nanotechnologies in Food and Agriculture. Cham: Springer, pp. 69–80, 2015.
[7] M. C. DeRosa, C. Monreal, M. Schnitzer, R. Walsh, and Y. Sultan, “Nanotechnology in fertilizers,” Nature Nanotechnology, vol. 5, no. 2, p. 91, 2010, doi: 10.1038/nnano.2010.2.
[8] O. U. Mason, T. C. Hazen, S. Borglin, P. S. Chain, E. A. Dubinsky, J. L. Fortney, J. Han, H. Y. N. Holman, J. Hultman, R. Lamendella, and R. Mackelprang, “Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to deep water horizon oil spill,” Journal of the International Society for Microbial Ecology, vol. 6, no. 9, pp. 1715–1727, 2012.
[9] I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arabian Journal of Chemistry, vol. 12, no. 7, pp. 908–931, 2019, doi: 10.1016/j.arabjc.2017.05.011.
[10] E. C. Torres and C. G. G. Somera, “How organic fertilizers can be used as a plant nutrient source in hydroponics: A review,” Applied Science and Engineering Progress, vol. 16, no. 4, pp. 6359–6359, 2023.
[11] W. Zhou, Q. Ma, L. Wu, R. Hu, D. L. Jones, D. R. Chadwick, Y. Jiang, Y. Wu, X. Xia, L. Yang, and Y. Chen, “The effect of organic manure or green manure incorporation with reductions in chemical fertilizer on yield-scaled N2O emissions in a citrus orchard,” Agriculture, Ecosystems and Environment, vol. 326, 2022, Art. no. 107806.
[12] L. Ye, X. Zhao, E. Bao, J. Li, Z. Zou, and K. Cao, “Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality,” Scientific Reports, vol. 10, p. 177, 2020.
[13] A. S. S. Thomas, W. Pongprayoon, K. Cheenkachorn, and M. Sriariyanun, “Plant microbe interactions-insights and views for applications in sustainable agriculture,” Applied Science and Engineering Progress, vol. 15, no. 1, 2021, Art. no. 5286, doi: 10.14416/j.asep.2021.07.008.
[14] A. Kalia and H. Kaur, “Nanobiofertilizers: Harnessing dual benefits of nanonutrient and biofertilizers for enhanced nutrient use efficiency and sustainable productivity,” in Nanoscience for Sustainable Agriculture. Berlin, Germany: Springer, pp. 51–73, 2019.
[15] C. Du, J. J. Abdullah, D. Greetham, D. Fu, M. Yu, L. Ren, S. Li, and D. Lu, “Valorization of food waste into biofertiliser and its field application,” Journal of Cleaner Production, vol. 187, pp. 273–284, 2018.
[16] S. Guo, P. Wang, X. Wang, M. Zou, C. Liu, and J. Hao, “Microalgae as biofertilizer in modern agriculture,” in Microalgae Biotechnology for Food, Health and High-Value Products. Berlin, Germany: Springer, pp. 397–411, 2020.
[17] L. El-Bassi, A. Ibn Ferjani, M. Jeguirim, S. Bennici, S. Jellali, H. Akrout, N. Thevenin, L. Ruidavets, A. Muller, and L. Limousy, “Production of a biofertilizer from exhausted grape marc waste: Agronomic and environmental impact on plant growth,” in Biomass Conversion and Biorefinery. Berlin, Germany: Springer, pp. 1–14, 2020.
[18] O. N. Igiehon and O. O. Babalola, “Rhizobium and mycorrhizal fungal species improved soybean yield under drought stress conditions,” Current Microbiology, vol. 78, pp. 1615–1627, 2021.
[19] S. A. Alen’Kina and V. E. Nikitina, “Stimulating effect from lectins of associative bacteria of the genus azospirillum on the germination and morphometric characteristics of spring wheat sprouts in simulated abiotic stress,” Russian Journal of Plant Physiology, vol. 68, pp. 315– 321, 2021.
[20] I. Khan, S. A. Awan, R. Ikram, M. Rizwan, N. Akhtar, H. Yasmin, R. Z. Sayyed, S. Ali, and N. Ilyas, “Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress,” Physiology and Molecular Biology of Plants, vol. 27, no. 3, pp. 417–428, 2021.
[21] D. Jabborova, A. Kannepalli, K. Davranov, M. Mirzakulov, S. Abdullaev, J. Park, Y. H. Kim, and I. T. Kurbonov, “Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions,” Scientific Reports, vol. 11, 2021, Art. no. 22081.
[22] L. Thomas and I. Singh, “Microbial biofertilizers: Types and applications,” in Biofertilizers for Sustainable Agriculture and Environment. Berlin, Germany: Springer, pp. 1–19, 2019.
[23] S. Basu, R. Rabara, and S. Negi, “Towards a better greener future-an alternative strategy using biofertilizers. I: Plant growth promoting bacteria,” Plant Gene, vol. 12, pp. 43–49, 2017.
[24] M. L. Jat, D. Chakraborty, J. K. Ladha, C. M. Parihar, A. Datta, B. Mandal, and B. Gerard, “Carbon sequestration potential, challenges, and strategies towards climate action in smallholder agricultural systems of South Asia,” Crop and Environment, vol. 1, no. 1, pp. 86–101, 2022.
[25] R. Hijbeek, M. Van Loon, and M.K. Van Ittersum, “Fertilizer use and soil carbon sequestration,” CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Wageningen, Netherlands, 2019.
[26] C. Cordell and S. White, “Tracking phosphorus security: Indicators of phosphorus vulnerability in the global food system,” Food Security, vol. 7, pp. 337–350, 2015.
[27] A. Ashfaq, N. Hussain, and M. Athar, “Role of potassium fertilizers in plant growth, crop yield and quality fiber production of cotton: An overview,” FUUAST Journal of Biology, vol. 5, no. 1, pp. 27–35, 2015.
[28] S. S. Ali, O. M. Darwesh, M. Kornaros, R. Al-Tohamy, A. Manni, A. E. R. R. ElShanshoury, and A. Rakshit, “Nanobiofertilizers: Synthesis, advantages, and applications,” in Biofertilizers, M. S. Khan, Eds. Cambridge, UK: Woodhead Publishing, pp. 359–370, 2021.
[29] K. Ramesh, A. K. Biswas, J. Somasundaram, and A. S. Rao, “Nanoporous zeolites in farming: Current status and issues ahead,” Current Science, vol. 99, no. 6, pp. 760–764, 2010.
[30] G. Chugh, K. H. Siddique, and Z. M. Solaiman, “Nanobiotechnology for a griculture: Smart technology for combating nutrient deficiencies with nanotoxicity challenges,” Sustainability, vol. 13, p. 1781, 2021.
[31] R. Bhattacharyya, S. Kundu, V. Prakash, and H. S. Gupta, “Effect of phosphorus fertilization on yield sustainability and soil phosphorus fractions under soybean-wheat rotation in vertisols of central India,” Field Crops Research, vol. 108, no. 2, pp. 130–140, 2008.
[32] P. Liu, M. Zhao, X. Liu, C. B. Roberts, W. Hou, D. G. Ivey, and L. Zheng, “Controlled release of paraquat from surface-modified kaolinite nano-composites,” Applied Clay Science, vol. 33, no. 2, pp. 19–34, 2006.
[33] C. S. Rahale, “Formulation and characterization of nanofertilizers for controlled release of nutrients,” International Journal of Science and Advanced Technology, vol. 1, no. 11, pp. 23–27, 2011.
[34] S. Mondal, E. R. Rene, S. Murali, and C. Kang, “Layered double hydroxides: A delivery system for controlled release of agrochemicals,” Chemosphere, vol. 263, 2021, Art. no. 128180.
[35] R. F. Nascimento, J. C. Moreira, L. L. da Costa, M. R. Silva, C. Airoldi, and F. A. P. Garcia, “A nanohybrid composed of layered double hydroxides and the herbicide 2,4-D shows controlled release and low leaching,” Journal of Agricultural and Food Chemistry, vol. 68, no. 11, pp. 3442–3449, 2020.
[36] N. Accanto, P. Niederhafner, J. Kaiser, S. van der Linden, A. M. Uhrich, and R. Kressler, “Bio-based nanocarriers for controlled release of agrochemicals,” Journal of Agricultural and Food Chemistry, vol. 66, no. 37, pp. 9744–9752, 2018.
[37] S. Nishimura, K. Taki, T. Tsubota, S. Nara, A. Yaguchi, and N. Kato, “Control of urea hydrolysis and soil nitrogen release by urease encapsulated inside nanoporous silica,” Journal of Agricultural and Food Chemistry, vol. 68, no. 52, pp. 14878–14885, 2020.
[38] J. G. Parsons, J. R. Peralta-Videa, J. L. Gardea- Torresdey, and A. Santiago, “Nanotechnology for sustainable smart agriculture: Self-regulating nutrient release,” ACS Applied Nano Materials, vol. 5, no. 1, pp. 48–68, 2022.
[39] Y. Huang, Y. Dong, X. Ding, Z. Ning, J. Shen, H. Chen, and Z. Su, “Effect of nano-TiO2 composite on the fertilization and fruit-setting of litchi,” Nanomaterials (Basel), vol. 12, no. 23, 2022, Art. no. 4287, doi: 10.3390/nano12234287.
[40] A. M. Jakhar, I. Aziz, A. R. Kaleri, M. Hasnain, G. Haider, J. Ma, and Z. Abideen, “Nanofertilizers: A sustainable technology for improving crop nutrition and food security,” NanoImpact, vol. 7, 2022, Art. no. 100411.
[41] D. K. Soni, R. Singh, D. Singh, and M. Singh, “Mechanistic insights into microbial-mediated biosynthesis of nanoparticles,” Biotechnology Reports, vol. 32, 2022, Art. no. e00625.
[42] A. M. El-Ghamry, A. H. El-Naggar, M. M. El-Sheekh, A. H. El-Naggar, and S. M. El- Ewasy, “Bio-synthesis and applications of silver nanoparticles for the control plant diseases,” International Journal of Development Research, vol. 8, no. 3, pp. 19104–19112, 2018.
[43] B. Sharma, S. Tiwari, K. C. Kumawat, and M. Cardinale, “Nanobiofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations,” Science of the Total Environment, vol. 860, 2023, Art. no. 160476.
[44] Y. Yin and W. Wang, “Microbial biomass-derived biochar for environmental protection and agricultural production,” Journal of Environmental Management, vol. 246, pp. 798–807, 2019, doi: 10.1016/j.jenvman.2019.06.031.
[45] S. Rana, V. Kandari, P. R. Maulik, and A. Bhaumik, “Microbes: The chief source of nanoparticles,” in Microorganisms for Green Revolution. Amsterdam, Netherlands, Elsevier, pp. 137–169, 2020.
[46] J. S. Duhan, R. Kumar, N. Kumar, P. Kaur, K. Nehra, and S. Duhan, “Nanotechnology: The new perspective in precision agriculture,” Biotechnology Reports, vol. 15, pp. 11–23, 2017, doi: 10.1016/j.btre.2017.03.002.
[47] M. A. Iqbal, “Nanofertilizers for sustainable crop production under changing climate: A global perspective,” in Sustainable Crop Production, M. Hasanuzzaman, M. C. M. Teixeira Filho, M. Fujita, and T. A. R. Nogueira, Eds. London, UK: IntechOpen, pp. 1–13, 2019, doi: 10.5772/ intechopen.89089.
[48] B. T. de Sousa, J. L. de Oliveira, H. C. Oliveira, and V. L. S. de Castro, “Balancing the benefits to agriculture and adverse ecotoxicological impacts of inorganic nanoparticles,” in Inorganic Nanopesticides and Nanofertilizers: A View from the Mechanisms of Action to Field Applications, Cham: Springer, pp. 1–51, 2022.
[49] N. N. Nam, H. D. Do, K. T. Trinh, and N. Y. Lee, “Recent progress in nanotechnology-based approaches for food monitoring,” Nanomaterials, vol. 12, no. 23, p. 4116, 2021, doi: 10.3390/ nano12234116.
[50] S. Snehal and P. Lohani, “Silica nanoparticles: Its green synthesis and importance in agriculture,” Journal of Pharmacognosy and Phytochemistry, vol. 7, pp. 3383–3393, 2018.
[51] M. Usman, M. B. Hussain, M. Farooq, A. Wakeel, A. Nawaz, W. Nouman, H. F. Alharby, M. Kamran, and A. N. Chaudhry, “Nanotechnology in agriculture: Current status, challenges, and future opportunities,” Nanomaterials, vol. 10, no. 4, p. 671, 2020, doi: 10.3390/nano10040671.
[52] P. S. Preetha and N. Balakrishnan, “A review of nanofertilizers and their use and functions in soil,” International Journal of Current Microbiology and Applied Sciences, vol. 6, pp. 2752–2763, 2017.
[53] J. Kuzma, “Nanotechnology in animal production —upstream assessment of applications,” Livestock Science, vol. 103, no. 3, pp. 283–292, 2006.
[54] N. R. Scott, “Nanotechnology and animal health,” Revue Scientifique et Technique-Office International Des Epizooties, vol. 24, no. 1, p. 425, 2005.
[55] D. Maysinger, J. Lovrić, A. Eisenberg, and R. Savić, “Fate of micelles and quantum dots in cells,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 65, no. 3, pp. 270–281, 2007.
[56] C. I. Moraru, C. P. Panchapakesan, Q. Huang, P. Takhistov, S. Liu, and J. L. Kokini, “Nanotechnology: A new frontier in food science,” Food Technology, vol. 57, no. 12, pp. 24–29, 2003.
[57] C. F. Chau, S. H. Wu, and G. C. Yen, “The development of regulations for food nanotechnology,” Trends in Food Science and Technology, vol. 18, no. 5, pp. 269–280, 2007, doi: 10.1016/j.tifs.2007.01.007.
[58] K. S. Subramanian and C. S. Rahale, “Nanoparticles-advantages and applications in drug delivery,” Indian Journal of Experimental Biology, vol. 47, no. 9, pp. 743–752, 2009.
[59] J. A. Buentello, S. H. Gatrell, and V. T. John, “Nanotechnology: Prospects in developing countries,” Nanotechnology Law and Business, vol. 2, no. 3, pp. 345–359, 2005.
[60] L. Chuprova, N. Akimova, V. Krylova, V. Chapligin, A. Chuprov, and D. Akimov, “Effect of zeolite fertilizers on the humic substances of leached chernozem and the productivity of maize for silage,” Agrokhimiya, no. 5, pp. 45–49, 2004.
[61] S. Jinghua, “Nanocomposite fertilizer and its uses,” CN Patent 1569287A, 2004.
[62] J. R. Park, Y. H. Jang, I. K. Chung, and K. M. Kim, “Effect of nanosized calcium and magnesium particles on absorption in peach tree leaves,” Canadian Journal of Plant Science, vol. 102, pp. 293–300, 2022.
[63] M. A. Sharaf-Eldin, M. B. Elsawy, M. Y. Eisa, H. El-Ramady, M. Usman, and M. Zia-ur-Rehman, “Application of nano-nitrogen fertilizers to enhance nitrogen efficiency for lettuce growth under different irrigationregimes,” Pakistan Journal of Agricultural Sciences, vol. 59, pp. 367–379, 2022.
[64] M. B. Taskin and A. Gunes, “Iron Biofortification of wheat grains by foliar application of nano zero-valent Iron (nZVI) and other Iron sources with urea,” Journal of Soil Science and Plant Nutrition, vol. 22, pp. 4642–4652, 2022.
[65] P. Aqaei, W. Weisany, M. Diyanat, J. Razmi, and P. C. Struik, “Response of maize (Zea mays L.) to potassium nano-silica application under drought stress,” Journal of Plant Nutrition, vol. 43, pp. 1205–1216, 2020.
[66] C. O. Ogunkunle, M. A. Jimoh, N. T. Asogwa, K. Viswanathan, V. Vishwakarma, and P. O. Fatoba, “Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate,” Ecotoxicology and Environmental Safety, vol. 155, pp. 86–93, 2018.
[67] V. Tavallali, “Effects of iron nano-complex and Fe-EDDHA on bioactive compounds and nutrient status of purslane plants,” International Agrophysics, vol. 32, pp. 411–419, 2018.
[68] C. O. Dimkpa and U. Singh, “Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.),” Agronomy, vol. 8, p. 158, 2018, doi: 10.3390/ agronomy8080158.
[69] M. B. Taskin, O. Sahin, H. Taskin, O. Atakol, A. Inal, and A. Gunes, “Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant,” Journal of Plant Nutrition, vol. 41, pp. 1148–1154, 2018.
[70] T. Adhikari, S. Kundu, A. K. Biswas, J. C. Tarafdar, and A. S. Rao, “Characterization of zinc oxide nanoparticles and their effect on growth of maize (Zea mays L.) plant,” Journal of Plant Nutrition, vol. 38, pp. 1505–1515, 2015.
[71] K. H. Hua, H. C. Wang, R. S. Chung, and J. C. Hsu, “Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance,” Journal of Pesticide Science, vol. 40, pp. 208–213, 2015.
[72] R. Q. Liu and R. Lal, “Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max),” Scientific Reports, vol. 4, pp. 1–6, 2014.
[73] T. Prasad and P. Sudhakar, “Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut,” Journal of Plant Nutrition, vol. 35, pp. 905–927, 2012.
[74] G. Millan, F. Agosto, M. Vazquez, L. Botto, L. Lombardi, and L. Juan, “Use of clinoptilolite as a carrier for nitrogen fertilizers in soils of the Pampean regions of Argentina,” Ciencia e Investigación Agraria, vol. 35, pp. 293–302, 2008.
[75] A. K. Congreves and L. L. van Eerd, “Nitrogen cycling and management in intensive horticultural systems,” Nutrient Cycling in Agroecosystems, vol. 102, pp. 299–318, 2015.
[76] G. Pandey, “Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India,” Environmental Technology and Innovation, vol. 11, pp. 299–307, 2018.
[77] C. Kole, T. Kole, R. Randunu, C. Choudhary, K. Podila, P. Ke, R. Rao, and M. Marcus, “Nanobiotechnology can boost crop production and quality: First evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia),” BMC Biotechnology, vol. 13, no. 1, 2013, doi: 10.1186/ 1472-6750-13-37.
[78] E. Malusá and N. Vassilev, “A contribution to set a legal framework for biofertilisers,” Applied Microbiology and Biotechnology, vol. 98, pp. 6599–6607, 2014, doi: 10.1007/s00253-014- 5787-3.
[79] P. K. Rai, A. Rai, N. K. Sharma, T. Singh, and Y. Kumar, “Limitations of biofertilizers and their revitalization through nanotechnology,” Journal of Cleaner Production, vol. 418, 2023, Art. no. 138194.
[80] T. Simarmata, T. Hersanti, N. Turmuktini, R. Betty Fitriatin, M. Setiawati, and Purwanto, “Application of bioameliorant and biofertilizers to increase soil health and rice productivity,” Hayati Journal of Biosciences, vol. 23, pp. 181– 184, 2016, doi: 10.1016/j.hjb.2016.10.001.
[81] H. Chhipa, “Mycosynthesis of nanoparticles for smart agricultural practice: A green and eco-friendly approach,” in Green Synthesis, Characterization and Applications of Nanoparticles. Amsterdam, Netherlands: Elsevier, pp. 87–109, 2019.
[82] H. M. Yusof, R. Mohamad, U. H. Zaidan, and N. A. A. Rahman, “Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in the animal industry: A review,” Journal of Animal Science and Biotechnology, vol. 10, p. 57, 2019.
[83] N. Asmathunisha and K. Kathiresan, “A review on biosynthesis of nanoparticles by marine organisms,” Colloids and Surfaces B: Biointerfaces, vol. 103, pp. 283–287, 2013.
[84] E. Malusá, L. Sas-Paszt, and J. Ciesielska, “Technologies for beneficial microorganisms inocula used as biofertilizers,” Transfusion and Apheresis Science, vol. 49, no. 1, pp. 120–126, 2012.
[85] S. K. Shukla, R. Kumar, R. K. Mishra, A. Pandey, A. Pathak, M. G. H. Zaidi, S. K. Srivastava, and A. Dikshit, “Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): Astep toward development of nanobiofertilizers,” Nanotoxicology, vol. 4, no. 5, pp. 439–448, 2015, doi: 10.1515/ntrev- 2015-0036.
[86] J. Jampílek and K. Kráľová, “Nanomaterials for delivery of nutrients and growth promoting compounds to plants,” in Nanotechnology: An Agricultural Paradigm, R. Prasad, M. Kumar, and V. Kumar, Eds. Cham: Springer, pp. 177– 226, 2017.
[87] S. Kaushik and S. R. Djiwanti, “Nanotechnology for enhancing crop productivity,” in Nanotechnology: An Agricultural Paradigm, R. Prasad, M. Kumar, and V. Kumar, Eds. Cham: Springer, pp. 249– 262, 2017.
[88] R. Kumari and D. P. Singh, “Nanobiofertilizer: An emerging eco-friendly approach for sustainable agriculture,” in Proceedings of the National Academy of Science, India Section B: Biological Sciences, vol. 90, pp. 733–741, 2020.
[89] M. Golbashy, H. Sabahi, I. Allahdadi, H. Nazokdast, and M. Hossein, “Synthesis of highly intercalated urea-clay nanocomposite via domestic montmorillonite as an eco-friendly slow-release fertilizer,” Archives of Agronomy and Soil Science, vol. 63, no. 1, pp. 84–95, 2016.
[90] J. Vandergheynst, H. Scher, H. Y. Guo, and D. Schultz, “Water-in-oil emulsions that improve the storage and delivery of the biolarvacide Lagenidium giganteum,” BioControl, vol. 52, pp. 207–229, 2007.
[91] S. Moradi, A. Babapoor, S. Ghanbarlou, M. Y. Kalashgarani, I. Salahshoori, and A. Seyfaee, “Toward a new generation of fertilizers with the approach of controlled-release fertilizers: A review,” Journal of Coatings Technology and Research, vol. 21, pp. 31–54, 2023.
[92] Y. El Fannassi, A. Gharsallaoui, S. Khelissa, M. A. El Amrani, I. Suisse, M. Sauthier, C. Jama, S. Boudra, and N. E. Chihib, “Complexation of terpenes for the production of new antimicrobial and antibiofilm molecules and their encapsulation in order to improve their activities,” Applied Sciences, vol. 13, no. 17, p. 9854, 2023.
[93] Z. Ashkan, R. Hemmati, A. Homaei, A. Dinari, M. Jamlidoost, and A. Tashakor, “Immobilization of enzymes on nanoinorganic support materials: An update,” International Journal of Biological Macromolecules, vol. 168, pp. 708–721, 2021.
[94] N. M. Nurazzi, E. Bayraktar, M. N. F. Norrrahim, H. A. Aisyah, N. Abdullah, and M. R. M. Asyraf, Nanofillers for Sustainable Applications. Boca Raton, FL: CRC Press, 2023.
[95] Y. P. Timilsena, T. O. Akanbi, N. Khalid, B. Adhikari, and C. J. Barrow, “Complex coacervation: Principles, mechanisms and applications in microencapsulation,” International Journal of Biological Macromolecules, vol. 121, pp. 1276–1286, 2019.
[96] C. An, M. Zhang, X. Ma, H. Wang, J. Yang, S. Wang, H. Zhang, Z. Li, H. Wu, J. Zhou, J. Guo, and Z. Su, “Nanomaterials and nanotechnology for the delivery of agrochemicals: Strategies towards sustainable agriculture,” Journal of Nanobiotechnology, vol. 20, pp. 1–19, 2022, doi: 10.1186/s12951-022-01358-0.
[97] R. Devi, T. Kaur, R. Negi, D. Kour, K. K. Chaubey, and A. N. Yadav, “Indigenous plant growth-promoting rhizospheric and endophytic bacteria as liquid bioinoculants for growth of sweet pepper (Capsicum annum L.),” Biologia, vol. 78, pp. 2623–2633, 2023, doi: 10.1007/ s11756-023- 01410-w.
[98] A. Kalia and N. Kaur, “Nano-biofertilizers for sustainable crop production and nutrient use efficiency,” in Nanotechnology: Potential Applications in Plant Sciences, S. Khan, N. A. Anjum, N. A. Siddiqui, and M. Danish, Eds. Cham: Springer, pp. 193–220, 2023, doi: 10.1007/978-981-16-9448-6_9.
[99] M. Vafa, A. Alirezalu, H. R. Asghari, and A. Samadzadeh, “Application of encapsulated rhizobacteria and chemical elicitors for improved productivity and growth of green bean,” Journal of Plant Nutrition, vol. 44, no. 4, pp. 522–538, 2021, doi: 10.1080/01904167.2020.1854726.
[100] J. Panichikkal, D. Vijai, R. Subbaiya, and S. Poonguzhali, “Synergistic effects of zinc oxide nanoparticles and salicylic acid enhance plant growth promoting attributes of Bacillus velezensis JW-1,” Biointerface Research in Applied Chemistry, vol. 11, no. 4, pp. 13560– 13570, 2021, doi: 10.33263/BRIAC114.13560.
[101] Z. Saberi-Rise and M. Moradi-Pour, “Microencapsulation of plant growth-promoting rhizobacteria by calcium alginate-starch-bentonite and evaluation of survival rate, water retention and releasing behaviours,” International Journal of Biological Macromolecules, vol. 164, pp. 1652–1660, 2020, doi: 10.1016/j.ijbiomac.2020.06.235.
[102] R. Singh, K. Patel, J. Li, and K. H. Kim, “Pyrolysis of organic wastes: A review,” Journal of Analytical and Applied Pyrolysis, vol. 141, 2019, Art. no. 102728, doi: 10.1016/j.jaap.2019.102728.
[103] Y. Su, V. Ashworth, C. Kim, A. S. Adeleye, P. Rolshausen, C. Roper, W. J. G. M. Peijnenburg, J. C. White, P.A. Holden, and E. J. Petersen, “Delivery, uptake, fate, and transport of engineered nanoparticles in plants: A critical review and data analysis,” Environmental Science: Nano, vol. 6, pp. 2311–2331, 2019.
[104] A. Singh, P. K. Gautam, A. Verma, V. Singh, P. M. Shivapriya, S. Shivalkar, A. K. Sahoo, and S. K. Samanta, “Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review,” Biotechnology Reports, vol. 25, 2020, Art. no. e00427, doi: 10.1016/j.btre.2020. e00427.
[105] D. Mittal, G. Kaur, P. Singh, K. Yadav, and S. A. Ali, “Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook,” Frontiers in Nanotechnology, vol. 2, 2020, Art. no. 579954.
[106] C. Patel, J. Singh, A. Karunakaran, and W. Ramakrishna, “Evolution of nanobiofertilizer as a green technology for agriculture,” Agriculture, vol. 13, no. 10, p. 1865, 2023.
[107] B. Ahmed, A. Syed, A. Rizvi, M. Shahid, A. H. Bahkali, M. S. Khan, and J. Musarrat, “Impact of metal- oxide nanoparticles on growth, physiology and yield of tomato (Solanum lycopersicum L.) modulated by Azotobacter salinestris strain ASM,” Environmental Pollution, vol. 269, 2021, Art. no. 116218.
[108] A. Kalia, S. P. Sharma, and H. Kaur, “Nanoscale fertilizers: Harnessing boons for enhanced nutrient use efficiency and crop productivity,” Nanobiotechnology and Applied Plant Protection, vol. 2, pp. 191–208, 2019.
[109] S. Gouda, R. G. Kerry, G. Das, S. Paramithiotis, H. S. Shin, and J. K. Patra, “Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture,” Microbiological Research, vol. 206, pp. 131– 140, 2018.
[110] M. V. Khodakovskaya, B.-S. Kim, J. N. Kim, M. Alimohammadi, E. Dervishi, T. Mustafa, and C. E. Cernigla, “Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community,” Small, vol. 9, no. 1, pp. 115–123, 2013.
[111] M. H. Lahiani, E. Dervishi, J. Chen, Z. Nima, A. Gaume, A. S. Biris, and M. V. Khodakovskaya, “Impact of carbon nanotube exposure to seeds of valuable crops,” ACS Applied Materials and Interfaces, vol. 5, pp. 7965–7973, 2013.
[112] B. A. Bhanvase, T. P. Shende, and S. H. Sonawane, “A review on graphene-TiO2 and doped graphene-TiO2 nanocomposite photocatalyst for water and wastewater treatment,” Environmental Technology Reviews, vol. 6, pp. 1–14, 2017.
[113] Z. Haris and I. Ahmad, “Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites,” International Journal of Life-Sciences Scientific Research, vol. 3, pp. 1020–1030, 2017.
[114] B. Dhir, “Biofertilizers and biopesticides: Eco-friendly biological agents,” in Advances in Environmental Biotechnology, R. Kumar, A. Sharma, and S. Ahluwalia Eds. Cham: Springer, Singapore, pp. 167–188, 2017.
[115] J. U. Itelima, W. J. Bang, M. D. Silas, I. A. Onyimba, O. J. Egbere, “A review: Biofertilizer —a key player in enhancing soil fertility and crop productivity,” Journal of Microbiology and Biotechnology Reports, vol. 2, pp. 22–28, 2018.
[116] S. Mishra, C. Keswani, P. C. Abhilash, L. F. Fraceto, and H. B. Singh, “Integrated approach of agri-nanotechnology: Challenges and future trends,” Frontiers in Plant Science, vol. 8, p. 471, 2017.
[117] M. R. Khan and T. F. Rizvi, “Application of nanofertilizer and nanopesticides for improvements in crop production and protection,” in Nanoscience and Plant Soil Systems. Cham: Springer, pp. 1–19, 2017.
[118] Q. Teng, D. Zhang, X. Niu, and C. Jiang, “Influences of application of slow-release nano-fertilizer on green pepper growth, soil nutrients and enzyme activity,” in IOP Conference Series: Earth and Environmental Science, vol. 208, 2018, Art. no. 012014.
[119] P. Vejan, R. Abdullah, T. Khadiran, S. Ismail, and A. N. Boyce, “Role of plant growth promoting rhizobacteria in agricultural sustainability—A review,” Molecules, vol. 21, no. 573, pp. 1–17, 2016.
[120] T. Thirugnanasambandan, “Advances and trends in nanobiofertilizers,” SSRN, vol. 59, 2019, doi: 10.2139/ssrn.3306998.
[121] A. Qureshi, D. K. Singh, and S. Dwivedi, “Nanofertilizers: A novel way for enhancing nutrient use efficiency and crop productivity,” International Journal of Current Microbiology and Applied Sciences, vol. 7, pp. 3325–3335, 2018.
[122] S. B. Manjunatha, D. P. Biradar, and Y. R. Aladakatti, “Nanotechnology and its applications in agriculture: A review,”Journal of Farm Sciences, vol. 29, pp. 1–13, 2016.
[123] M. Ahemad and M. Kibret, “Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective,” Journal of King Saud University – Science, vol. 26, pp. 1–20, 2014.
[124] R. Mala, A. V. Celsia, S. V. Bharathi, S. R. Blessina, and U. Maheswari, “Evaluation of nanostructured slow-release fertilizer on the soil fertility, yield, and nutritional profile of Vigna radiata,” Recent Patents on Nanotechnology, vol. 11, pp. 50–62, 2017.
[125] D. M. Gatahi, H. Wanyika, A. W. Kihurani, E. Ateka, and A. Kavoo, “Use of bio-nanocomposites in enhancing bacterial wilt plant resistance, and water conservation in greenhouse farming,” in The 2015 JKUAT Scientific Conference. Agricultural Sciences, Technologies and Global Networking, 2015, vol. 41, p. 52.
[126] V. K. Mishra and A. Kumar, “Impact of metal nanoparticles on the plant growth promoting rhizobacteria,” Digest Journal of Nanomaterials and Biostructures, vol. 4, pp. 587–592, 2009.
[127] R. Mukhopadhyay and N. De, “Nanoclay polymer composite: Synthesis, characterization, properties and application in rainfed agriculture,” Global Journal of Bio-Science and Biotechnology, vol. 3, pp. 133–138, 2014.
[128] K. M. A. Rahman and D. Zhang, “Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability,” Sustainability, vol. 10, no. 3, p. 759, 2018.
[129] C. M. Monreal, M. De Rosa, S. C. Mallubhotla, P. S. Bindraban, and C. Dimkpa, “Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients,” Biology and Fertility of Soils, vol. 52, pp. 423–437, 2016.
[130] M. Janmohammadi, A. Navid, A. E. Segherloo, and N. Sabaghnia, “Impact of nano-chelated micronutrients and biological fertilizers on growth performance and grain yield of maize under deficit irrigation condition,” Biologija, vol. 62, pp. 134–147, 2016.
[131] A. B. Morales-Díaz, H. Ortega-Ortíz, A. Juárez- Maldonado, G. Cadenas-Pliego, S. González- Morales, and A. Benavides-Mendoza, “Application of nanoelements in plant nutrition and its impact in ecosystems,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 8, 2017, Art. no. 013001.
[132] A. Dikshit, S. K. Shukla, and R. K. Mishra, Exploring Nanomaterials with PGPR in Current Agricultural Scenario: PGPR with Special Reference to Nanomaterials. London, UK: Lap Lambert Academic Publishing, 2013.
[133] M. Merinero, A. Alcudia, B. Begines, G. Martínez, M. J. Martín-Valero, J. A. Pérez-Romero, E. Mateos-Naranjo, S. Redondo-Gómez, S. Navarro-Torre, Y. Torres, and F. Merchán, “Assessing the biofortification of wheat plants by combining a plant growth-promoting rhizobacterium (PGPR) and polymeric Fe-nanoparticles: Allies or enemies?,” Agronomy, vol. 12, no. 1, p. 228, 2022.
[134] M. M. Pour, R. S. Riseh, and Y. A. Skorik, “Sodium alginate and gelatin nanoformulations for encapsulation of Bacillus velezensis and their use for biological control of Pistachio gummosis,” Materials, vol. 15, p. 2114, 2022.
[135] J. Panichikkal, D. P. Mohanan, S. Koramkulam, and R. E. Krishnankutty, “Chitosan nanoparticles augmented indole-3-acetic acid production by rhizospheric Pseudomonas monteilii,” Journal of Basic Microbiology, vol. 62, pp. 1467–1474, 2022.
[136] E. M. Hafez, H. S. Osman, S. M. Gowayed, S. A. Okasha, A. E.-D. Omara, R. Sami, A. M. Abd El-Monem, and U. A. Abd El-Razek, “Minimizing the adverse impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles,” Agronomy, vol. 11, p. 676, 2021.
[137] T. T. Win, S. Khan, B. Bo, S. Zada, and P. Fu, “Green synthesis and characterization of Fe3O4 nanoparticles using chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity,” Scientific Reports, vol. 11, 2021, Art. no. 21996.
[138] M. Tahir, M. Imran, F. Nawaz, M. Shahid, M. A. Naeem, I. Ahmad, M. Akram, U. Khalid, A. B. U. Farooq, H. F. Bakhat, and M. Kamran, “Effects of Bacillus sp. MR-1/2 and magnetite nanoparticles on yield improvement of rice by urea fertilizer under different watering regimes,” Journal of Applied Microbiology, vol. 131, pp. 2433–2447, 2021.
[139] E. E. Kandil, N. R. Abdelsalam, M. A. Mansour, H. M. Ali, and M. H. Siddiqui, “Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production,” Scientific Reports, vol. 10, pp. 8752, 2020.
[140] S. Eliaspour, R. Seyed Sharifi, A. Shirkhani, and S. Farzaneh, “Effects of biofertilizers and iron nano-oxide on maize yield and physiological properties under optimal irrigation and drought stress conditions,” Food Science and Nutrition, vol. 8, pp. 5985–5998, 2020.
[141] P. Kumar, V. Pahal, A. Gupta, R. Vadhan, H. Chandra, and R. C. Dubey, “Effect of silver nanoparticles and Bacillus cereus LPR2 on the growth of Zea mays,” Scientific Reports, vol. 10, 2020, Art. no. 20409.
[142] J. Rajak, M. Bawaskar, D. Rathod, G. Agarkar, D. Nagaonkar, A. Gade, and M. Rai, “Interaction of copper nanoparticles and an endophytic growth promoter Piriformospora indica with Cajanus cajan,” Journal of the Science of Food and Agriculture, vol. 97, pp. 4562–4570, 2017.
[143] F. Ghooshchi, “Influence of titanium and bio-fertilizers on some agronomic and physiological attributes of triticale exposed to cadmium stress,” Global NEST Journal, vol. 19, no. 3, pp. 458–463, 2017.
[144] M. Zhang, R. Gong, S. Li, C. Yang, Y. Liu, and Y. Sun, “Preparation of superhydrophobic bio-based polyurethane-coated controlled-release fertilizer with nanosilica,” Industrial Crops and Products, vol. 101, pp. 54–63, 2017, doi: 10.1016/j.indcrop.2017.02.048.
[145] S. S. Celsia and J. G. Mala, “Effect of nano NPK, neem cake and plant growth promoting rhizobacteria on seed germination and seedling parameters of green gram (Vigna radiata L.),” Legume Research, vol. 40, no. 4, pp. 658–664, 2017.
[146] S. Cholapandian and V. Mythily, “Effect of chitosan-chicken feather nanocomposite on the growth promotion of tomato, fenugreek and mustard plants,” International Journal of Biological Macromolecules, vol. 86, pp. 472–479, 2016, doi: 10.1016/j.ijbiomac. 2016.02.002.
[147] B. Kaviani, and N. A.S. E. R. Negahdar, “Effects of Biological nano-fertilizer on the morphological, physiological and proliferation traits and quality of buxus hyrcana pojark,” Bangladesh Journal of Botany, vol. 45, no. 5, pp. 1135–1142, 2016.
[148] S. Mir, A. Sirousmehr, and E. Shirmohammadi, “Effect of nano and biological fertilizers on carbohydrate and chlorophyll content of forage sorghum (speed feed hybrid),” International Journal of Biosciences (IJB), vol. 6, pp. 157–164, 2015.
[149] A. Farnia and M. M. Omidi, “Effect of nano-zinc chelate and nano-biofertilizer on yield and yield components of maize (Zea mays L.), under water stress condition,” Indian Journal of Natural Sciences, vol. 5, no. 4614, 2015, Art. no. 4707.
[150] E. Jakiene, V. Spruogis, K. Romaneckas, A. Dautarte, and D. Avizˇienyte, “The bio-organic nanofertilizer improves sugar beet photosynthesis process and productivity,” Zemdirbyste- Agriculture, vol. 102, pp. 141–146, 2015.
[151] N. G. M. Palmqvist, S. Bejai, J. Meijer, G. A. Seisenbaeva, and V. G. Kessler, “Nanotitania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management,” Scientific Reports, vol. 5, 2015, Art. no. 10146.
[152] A. Sabir, K. Yazara, F. Sabira, Z. Karaa, M. Atilla Yazicib, and N. Goksu, “Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations,” Scientia Horticulturae, vol. 175, pp. 1–8, 2014.
[153] M. Mardalipour, H. Zahedi, and Y. Sharghi, “Valuation of nanobiofertilizer efficiency on agronomic traits of spring wheat at different sowing dates,” An International Journal of Biology Forum, vol. 6, pp. 349–356, 2014.
[154] D. Tahmasbi, R. Zarghami, A. V. Azghandi, and M. Chaichi, “Effects of nanosilver and nitroxin biofertilizer on yield and yield components of potato mini tubers,” International Journal of Agriculture and Biology, vol. 13, pp. 986–990, 2011.
[155] A. R. Safaei, S. I. Allakhverdiev, and E. R. Babayev, “The effect of humic acid and nanofertilizers on photosynthetic pigments and the antioxidant defense system of Nigella sativa L. under salinity stress conditions,” Turkish Journal of Botany, vol. 35, no. 4, pp. 361–367, 2011, doi: 10.3906/bot-0906-11
[156] Y. N. Kumar, “Nanofertilizers for enhancing nutrient use efficiency, crop productivity and economic returns in winter season crops of rajasthan,” Annuals of Plant and Soil Research, vol. 22, no. 4, pp. 324–335, 2020.
[157] C. Han, J. Yang, X. Zhou, P. Yun, X. Li, D. Xu, Y. Zhong, B. Zhong, Z. Yan, and X. Wa n g , “Fulvic–polyphosphate composite embedded in ZnO nanorods (FA–APP@ZnO) for efficient P/Zn nutrition for peas (Pisum sativum L.),” RSC Advances, vol. 12, no. 51, pp. 33008– 33020, 2022.
[158] G. Ibrahim and R. Hegab, “Improving yield of barley using bio and nanofertilizers under saline conditions,” Egyptian Journal of Soil Science, vol. 62, no. 1, pp. 41–53, 2022.
[159] Z. Sepehrzadegan and O. Alizadeh, “Investigation of the growth bacteria and nano iron on the chlorophyll and some nutrients triticale,” Revista Agrogeoambiental, vol. 13, no. 1, 2021, doi: 10.18406/2316-1817v13n120211572.
[160] R. Samundeswari, N. Jeyapandiyan, M. Anitha, J. P. Kalaiarasi, R. S. Poonguzhali, C. Jayapradha, S. Rathikannu, and K. U. Kumar, “Impact of different levels of iron fertilizer on growth and yield physiology of kodo millet under rainfed conditions: An overview,” Journal of Applied Biology and Biotechnology, vol. 11, no. 2, pp. 33–40, 2022.
[161] S. Kaur, A. Kalia, and S. P. Sharma, “Fabrication and characterization of nano-hydroxyapatite particles and assessment of the effect of their supplementation on growth of bacterial root endosymbionts of cowpea,” Inorganic and Nano-Metal Chemistry, 2022, doi: 10.1080/24701556.2022.2078349.
[162] E. Murgueitio-Herrera, C. E. Falconí, L. Cumbal, J. Gómez, K. Yanchatipán, A. Tapia, K. Martínez, I. Sinde-Gonzalez, and T. Toulkeridis, “Synthesis of iron, zinc, and manganese nanofertilizers, using Andean blueberry extract, and their effect in the growth of cabbage and lupin plants,” Nanomaterials, vol. 12, no. 12, p. 1921, 2022.
[163] M. N. H. Al-Yasari, “Potassium and nano-copper fertilization effects on morphological and production traits of oat (Avena sativa L.),” SABRAO Journal of Breeding and Genetics, vol. 54, no. 3, pp. 678–685, 2022.
[164] M. Kolenčík, D. Ernst, M. Komár, M. Urík, M. Šebesta, E. Dobročka, I. Černý, R. Illa, R. Kanike, Y. Qian, and H. Feng, “Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions,” Nanomaterials, vol. 9, no. 11, p. 1559, 2019.
[165] D. M. Salama, M. E. Abd El-Aziz, E. A. Shaaban, S. A. Osman, and M. S. Abd El-Wahed, “The impact of nanofertilizer on agro-morphological criteria, yield, and genomic stability of common bean (Phaseolus vulgaris L.),” Scientific Reports, vol. 12, no. 1, 2022, Art. no. 18552.
[166] N. Xu, Z. Li, X. Huangfu, X. Cheng, C. Christodoulatos, J. Qian, M. Chen, J. Chen, C. Su, and D. Wang, “Facilitated transport of nTiO2-kaolin aggregates by bacteria and phosphate in water-saturated quartz sand,” Science of the Total Environment, vol. 713, 2020, Art. no. 136589.
[167] M. Murali, H. G. Gowtham, S. B. Singh, N. Shilpa, M. Aiyaz, M. N. Alomary, M. Alshamrani, A. Salawi, Y. Almoshari, M. A. Ansari, and K. N. Amruthesh, “Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and prospects,” Science of the Total Environment, vol. 811, 2022, Art. no. 152249, doi: 10.1016/j.scitotenv.2022.152249.
[168] S. K. Sahu, S. K. Bindhan, D. K. Acharya, and R. K. Padhee, “Development of nanobiofertilizer via chemical and biological synthesis,” International Research Journal of Modernization in Engineering Technology and Science, vol. 4, no. 7, pp. 1911–1927, 2022.
[169] S. T. Khan, S. F. Adil, M. R. Shaik, H. Z. Alkhathlan, M. Khan, and M. Khan, “Engineered nanomaterials in soil: Their impact on soil microbiome and plant health,” Plants, vol. 11, no. 1, p. 109, 2022.
[170] J. Wu, “Fate, accumulation and impact of metallic nanomaterials in the terrestrial environment,” Ph.D. dissertaton, Leiden University, Netherlands, 2021.
[171] J. S. Carvajal-Muñoz and C. E. Carmona-Garcia, “Benefits and limitations of biofertilization in agricultural practices,” Livestock Research for Rural Development, vol. 24, p. 43, 2012.
[172] F. Zulfiqar, M. Navarro, M. Ashraf, N. A. Akram, and S. Munné-Bosch, “Nanofertilizer use for sustainable agriculture: Advantages and limitations,” Plant Science, vol. 289, 2019, Art. no. 110270.
[173] D. Biswal, “Use of nanofertilizers in agriculture: Advantages, disadvantages, and future implications,” in Implications of Nanoecotoxicology on Environmental Sustainability, Harrisburg, PA: IGI Global, pp. 102–133, 2023.
[174] A. Raimi, R. Adeleke, and A. Roopnarain, “Soil fertility challenges and biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa,” Cogent Food and Agriculture, vol. 3, 2017, Art. no. 1400933.
[175] L. Herrmann and D. Lesueur, “Challenges of formulation and quality of biofertilizers for successful inoculation,” Applied Microbiology and Biotechnology, vol. 97, pp. 8859–8873, 2013, doi:10.1007/s00253-013-5228-8.
DOI: 10.14416/j.asep.2024.05.001
Refbacks
- There are currently no refbacks.