Page Header

UV-C Enhances Phenolics Metabolism and the Production of the Related Bioactive Compounds in Green Chi-fah Chili (Capsicum annuum L. cv. Chi-fah Kiaw) Fruit

Sompoch Noichinda, Kitti Bodhipadma, David W. M. Leung

Abstract


One of the fruit vegetables that is a favorite for consumers of spicy food worldwide is chili (Capsicum annuum). Thus, the external and internal quality attributes of harvested chili fruit, such as peel color and fruit antioxidants, are of interest for different cooking needs. UV-C is the shortest wavelength of ultraviolet radiation that can harm the living organisms. However, short-term exposure to this physical stress might have many advantages for crop species. This research studied the post-harvest effect of UV-C exposure for different times (0, 10, and 20 min) on the green fruit of Chi-fah chili. The results showed that the percentage of fruit with red peel color increased rapidly during storage after UV-C irradiation, especially in the 10-minute treatment 75% of fruit had red color after 6 days. UV-C treatment also promoted phenolic biosynthesis in green Chi-fah chili fruit as 10 and 20 min of UV-C exposure elevated phenolic contents in both the pulp and placenta with the maximum of 30 and 45 mg gallic acid/gFW, respectively. Exposure to 20 min of UV-C irradiation seemed to inhibit flavonoid production, whereas 10 min UV-C irradiation increased flavonoids in both the pulp and placenta (0.72 and 0.87 mg rutin/gFW, respectively). Of particular interest to the consumers, UV-C treatment could increase the capsaicin amount in green Chi-fah chili fruit. Only the fruit irradiated with UV-C for 10 min had the highest level of phenylalanine ammonia-lyase (PAL) activity in the pulp one day after storage, while the placenta had the highest level of PAL activity from day 1 to day 3. The 10 and 20 min UV-C irradiation led to the highest peroxidase (POD) activity in the pulp and the placenta, respectively. In conclusion, UV-C could be used to enhance the production of phenolics and related bioactive compounds, such as flavonoids and capsaicin in green Chi-fah chili fruit during postharvest storage.

Keywords



[1] A. Kumar, S. Kumar, T. Anju, and N. Ramchiary, “Genetic, epigenetic, and hormonal regulation of fruit development and ripening in Capsicum L. species,” Annual Plant Reviews Online, vol. 4, pp. 295–356, 2021, doi: 10.1002/ 9781119312994. apr0782.

 

[2] R. Alonso-Villegas, R. M. González-Amaro, C. Y. Figueroa-Hernández, and I. M. Rodríguez-Buenfil, “The genus Capsicum: A review of bioactive properties of its polyphenolic and capsaicinoid composition,” Molecules, vol. 28, 2023, Art. no. 4239, doi: 10.3390/molecules 28104239.

 

[3] A. Tahmasebi, A. M. Dastjerdi, and B. Jamali, “Microbial-based biological treatments improved the nutritional, nutraceutical and functional properties of greenhouse sweet pepper (Capsicum annuum L.),” Frontiers in Sustainable Food Systems, vol. 7, 2023, Art. no. 1145972, doi: 10.3389/fsufs.2023.1145972.

 

[4] L. Wang, Y. Zhong, J. Liu, R. Ma, Y. Miao, W. Chen, J. Zheng, X. Pang, and H. Wan, “Pigment biosynthesis and molecular genetics of fruit color in pepper,” Plants, vol. 12, 2023, Art. no. 2156, doi: 10.3390/plants12112156.

 

[5] S. Wittmann, I. Jüttner, and H. Mempel, “Fruit vegetables in indoor farming – potential of chili pepper production,” Acta Horticulturae, vol. 1369, pp. 31–40, 2023, doi: 10.17660/Acta Hortic.2023.1369.4.

 

[6] H. Buczkowska, J. Dyduch, and A. Najda, “Capsaicinoids in hot pepper depending on fruit maturity stage and harvest date,” Acta Scientiarum Polonorum Hortorum Cultus, vol. 12, pp. 183–196, 2013.

 

[7] K. Naisupab, A. Roythin, T. Sawangchart, P. Luangsriumporn, K. Bodhipadma, and S. Noichinda, “Effect of different maturity stages and storage time on antioxidants of Chi-Fah Yai (Capsicum annuum) fruits,” Agricultural Science Journal, vol. 46, no. 3/1 (Suppl.), pp. 157–160, 2015.

 

[8] S. Noichinda, K. Bodhipadma, D. Moungjomprang, N. Thongnurung, and H. Kasiolarn, “Harvesting indices of Chi-fah Yai pepper (Capsicum annuum L.) fruit,” The Journal of Applied Science, vol. 15, pp. 20–23, 2016.

 

[9] P. Pristijono, M. C. Bowyer, C. J. Scarlett, Q. V. Vuong, C. E. Stathopoulos, and J. B. Golding, “Postharvest UV-C treatment affects peel degreening 'Kensington Pride' mango fruit stored at 20 °C,” Acta Horticulturae, vol. 1275, pp. 215–220, 2020, doi: 10.17660/ActaHortic. 2020.1275.30.

 

[10] B. Yang, Y. Luo, Y. Tan, and J. Kan, “Effects of ethephon on ethephon residue and quality properties of chili pepper during pre-harvest ripening,” Journal of Food Science and Technology, vol. 58, pp. 2098–2108, 2021, doi: 10.1007/s13197-020-04719-5.

 

[11] R. Jansasithorn, A. R. East, E. W. Hewett, A. J. Mawson, and J. A. Heyes, “Temperature dependency of respiration rates of three chilli cultivars,” Acta Horticulturae, vol. 877, pp. 1821–1826, 2010, doi: 10.17660/ActaHortic. 2010.877.250.

 

[12] P. Sharma, A. B. Jha, R. S. Dubey, and M. Pessarakli, “Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions,” Journal of Botany, vol. 2012, 2012, Art. no. 217037, doi: 10.1155/2012/217037.

 

[13] C. Waszczak, M. Carmody, and J. Kangasjärvi, “Reactive oxygen species in plant signaling,” Annual Review of Plant Biology, vol. 69, pp. 209–236, 2018, doi: 10.1146/annurev-arplant-042817-040322.

 

[14] P. Swapnil, M. Meena, S. K. Singh, U. P. Dhuldhaj, Harish, and A. Marwal, “Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects,” Current Plant Biology, vol. 26, 2021, Art. no. 100203, doi : 10.1016/j. cpb. 2021.100203.

 

[15] L. K. Sari, S. Setha, and M. Naradisorn, “Effect of UV-C irradiation on postharvest quality of ‘Phulae’ pineapple,” Scientia Horticulturae, vol. 213, pp. 314–320, 2016, doi: 10.1016/j. scienta.2016.09.049.

 

[16] M. C. Rabelo, W. Y. Bang, V. Nair, R. E. Alves, D. A. Jacobo-Velázquez, S. Sreedharan, M. R. Alcântara de Miranda, and L. Cisneros-Zevallos, “UVC light modulates vitamin C and phenolic biosynthesis in acerola fruit: Role of increased mitochondria activity and ROS production,” Scientific Reports, vol. 10, 2020, Art. no. 21972, doi : 10.1038/s41598-020-78948-1.

 

[17] A. Safitri, M. Naradisorn, S. Kondo, and S. Setha, “UV-C irradiation suppressed mycelial growth and increased antioxidant properties and jasmonic acid in mandarin fruit,” Acta Horticulturae, vol. 1336, pp. 395–404, 2022, doi: 10.17660/ActaHortic.2022.1336.52.

 

[18] H. Lu, L. Li, J. Limwachiranon, J. Xie, and Z. Luo, “Effect of UV-C on ripening of tomato fruits in response to wound,” Scientia Horticulturae, vol. 213, pp. 104–109, 2016, doi: 10.1016/j. scienta.2016.10.017.

 

[19] L. Valerga, R. E. González, M. B. Pérez, A. Concellón, and P. F. Cavagnaro, “Differential and cultivar-dependent antioxidant response of whole and fresh-cut carrots of different root colors to postharvest UV-C radiation,” Plants, vol. 12, 2023, Art. no. 1297, doi: 10.3390/ plants12061297.

 

[20] E. Cantos, J. C. Espín, M. J. Fernández, J. Oliva, F. A. Tomás-Barberán, “Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines,” Journal of Agricultural and Food Chemistry, vol. 51, pp. 1208–1214, 2003, doi: 10.1021/ jf020939z.

 

[21] A. Valletta, L. M. Iozia, and F. Leonelli, “Impact of environmental factors on stilbene biosynthesis,” Plants, vol. 10, 2021, Art. no. 90, doi: 10.3390/ plants10010090.

 

[22] K. Mahdavian, M. Ghorbanli, and Kh. M. Kalantari, “The effects of ultraviolet radiation on some antioxidant compounds and enzymes in Capsicum annuum L.,” Turkish Journal of Botany, vol. 32, 2008, Art. no. 4.

 

[23] K. Mahdavian, M. Ghorbanli, and Kh. M. Kalantari, “The effects of ultraviolet radiation on the contents of chlorophyll, flavonoid, anthocyanin and proline in Capsicum annuum L.,” Turkish Journal of Botany, vol. 32, pp. 25–33, 2008.

 

[24] A. R. Vicente, C. Pineda, L. Lemoine, P. M. Civello, G. A. Martinez, and A. R. Chavesa, “UV-C treatments reduce decay, retain quality and alleviate chilling injury in pepper,” Postharvest Biology and Technology, vol. 35, pp. 69–78, 2005, doi: 10.1016/j.postharvbio. 2004.06.001.

 

[25] L. Ma, Q. Wang, L. Li, D. Grierson, S. Yuan, S. Zheng, Y. Wang, B. Wang, C. Bai, A. Fu, L. Gao, B. Zhu, Y. Luo, J. Mu, and J. Zuo, “UV-C irradiation delays the physiological changes of bell pepper fruit during storage,” Postharvest Biology and Technology, vol. 180, 2021, Art. no. 111506, doi: 10.1016/j.postharvbio.2021. 111506.

 

[26] C.-H. Chang, H.-Y. Lin, C.-Y. Chang, and Y.-C. Liu, “Comparisons on the antioxidant properties of fresh, fresh-dried and hot-air-dried tomatoes,” Journal of Food Engineering, vol. 77, pp. 478– 485, 2006, doi: 10.1016/j.jfoodeng. 2005.06.061.

 

[27] S. Noichinda, K. Bodhipadma, P. Lerksasen, and S. Ketsa, “Difference in capsaicin content among Thai Capsicum,” The Journal of Applied Science, vol. 11, pp. 1–4, 2012.

 

[28] E. L. Camm, and G. H. N. Towers, “Phenylalanine ammonia lyase,” Phytochemistry, vol. 12, pp. 961–973, 1973, doi: 10.1016/0031-9422(73) 85001-0.

 

[29] Y. Morita, H. Yamashita, B. Mikami, H. Iwamoto, S. Aibara, M. Terada, and J. Minami, “Purification, crystalliation and characterization of peroxidase from Coprinus cinereus,” The Journal of Biochemistry, vol. 103, pp. 693–699, 1988.

 

[30] M. G. Villa-Rivera, and N. Ochoa-Alejo, “Chili pepper carotenoids: Nutraceutical properties and mechanisms of action,” Molecules, vol. 25, 2020, Art. no. 5573, doi: 10.3390/molecules 25235573.

 

[31] N. Castillejo, L. Martínez-Zamora, and F. Art´es- Hernandez, “Postharvest UV radiation enhanced biosynthesis of flavonoids and carotenes in bell peppers,” Postharvest Biology and Technology, vol. 184, 2022, Art. no. 111774, doi: 10.1016/j. postharvbio.2021. 111774.

 

[32] A. Sharma, B. Shahzad, A. Rehman, R. Bhardwaj, M. Landi, and B. Zheng, “Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress,” Molecules, vol. 24, 2019, Art. no. 2452, doi: 10.3390/molecules24132452.

 

[33] N.-Q. Dong and H.-X. Lin, “Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions,” Journal of Integrative Plant Biology, vol. 63, pp. 180–209, 2021, doi: 10.1111/jipb.13054.

 

[34] C. T. Sulaiman, and I. Balachandran, “Total phenolics and total flavonoids in selected Indian medicinal plants,” Indian Journal of Pharmaceutical Sciences, vol. 74, pp. 258–260, 2012, doi: 10.4103/0250-474X.106069.

 

[35] D. Lin, M. Xiao, J. Zhao, Z. Li, B. Xing, X. Li, M. Kong, L. Li, Q. Zhang, Y. Liu, H. Chen, W. Qin, H. Wu, and S. Chen, “An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes,” Molecules, vol. 21, 2016, Art. no. 1374, doi: 10.3390/molecules21101374.

 

[36] M. Lu, C. Chen, Y. Lan, J. Xiao, R. Li, J. Huang, Q. Huang, Y. Cao, and C.-T. Ho, “Capsaicin—the major bioactive ingredient of chili peppers: Bio-efficacy and delivery systems,” Food & Function, vol. 11, pp. 2848–2860, 2020, doi: 10.1039/ D0FO00351D.

 

[37] A. Pérez-Ambrocio, J. A. Guerrero-Beltrán, X. Aparicio-Fernández, R. Ávila-Sosa, P. Hernández-Carranza, S. Cid-Pérez, and C. E. Ochoa-Velasco, “Effect of blue and ultraviolet- C light irradiation on bioactive compounds and antioxidant capacity of habanero pepper (Capsicum chinense) during refrigeration storage,” Postharvest Biology and Technology, vol. 135, pp. 19–26, 2018, doi: 10.1016/j.post harvbio.2017.08.023.

 

[38] M. Li, X. Li, C. Han, N. Ji, P. Jin, and Y. Zheng, “UV-C treatment maintains quality and enhances antioxidant capacity of fresh-cut strawberries,” Postharvest Biology and Technology, vol. 156, 2019, Art. no. 110945, doi: 10.1016/j.post harvbio.2019.110945.

 

[39] T. Zhu, J. Yang, D. Zhang, Q. Cai, Y. Shen, S. Tu, and K. Tu, “Light radiation promoted stilbene accumulation in peanut sprouts: A response of the reestablishment of oxidant‑antioxidant homeostasis,” Acta Physiologiae Plantarum, vol. 43, 2021, Art. no. 137, doi: 10.1007/s11738-021- 03305-2.

 

[40] C. Aza-González, H. G. Núñez-Palenius, and N. Ochoa-Alejo, “Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.),” Plant Cell Reports, vol. 30, pp. 695–706, 2011, doi: 10.1007/s00299-010-0968-8.

 

[41] A. Becerra-Moreno, M. Redondo-Gil, J. Benavides, V. Nair, L. Cisneros-Zevallos, and D. A. Jacobo- Velázquez, “Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot,” Frontiers in Plant Science, vol. 6, 2015, Art. no. 837, doi: 10.3389/fpls.2015.00837.

 

[42] M. T. Sanchez-Ballesta, L. Zacarias, A. Granell, and M. T. Lafuente, “Accumulation of PAL transcript and PAL activity as affected by heat-conditioning and low-temperature storage and its relation to chilling sensitivity in mandarin fruits,” Journal of Agricultural and Food Chemistry, vol. 48, pp. 2726–2731, 2000, doi: 10.1021/jf991141r.

 

[43] K. Gu, S. Hou, J. Chen, J. Guo, F. Wang, C. He, C. Zou, and X. Xie, “The physiological response of different tobacco varieties to chilling stress during the vigorous growing period,” Scientific Reports, vol. 11, 2021, Art. no. 22136, doi: 10.1038/s41598-021-01703-7.

 

[44] L. Almagro, L. V. Gómez Ros, S. Belchi-Navarro, R. Bru, A. Ros Barceló, and M. A. Pedreño, “Class III peroxidases in plant defence reactions,” Journal of Experimental Botany, vol. 60, pp. 377–390, 2009, doi: 10.1093/jxb/ ern277.

 

[45] V. P. Pandey, M. Awasthi, S. Singh, S. Tiwari, and U. N. Dwivedi, “A comprehensive review on function and application of plant peroxidases,” Biochemistry & Analytical Biochemistry, vol. 6, 2017, Art. no. 308, doi: 10.4172/2161-1009. 1000308.

 

[46] J. Díaz, F. Pomar, A. Bernal, and F. Merino, “Peroxidases and the metabolism of capsaicin in Capsicum annuum L.,” Phytochemistry Reviews, vol. 3, pp. 141–157, 2004.

 

[47] M. A. K. Jansen, R. E. van den Noort, M. Y. Adillah Tan, E. Prinsen, L. M. Lagrimini, and R. N. F. Thorneley, “Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress,” Plant Physiology, vol. 126, pp. 1012–1023, 2001, doi: 10.1104/pp.126.3.1012.

 

[48] J. D. Maksimović, V. Maksimović, B. Živanović, V. H.-T. Šukalović, and M. Vuletić, “Peroxidase activity and phenolic compounds content in maize root and leaf apoplast, and their association with growth,” Plant Science, vol. 175, pp. 656– 662, 2008, doi:10.1016/j. plantsci.2008.06.015.

 

[49] A. Rácz, G. Czégény, K. Csepregi, and É. Hideg, “Ultraviolet-B acclimation is supported by functionally heterogeneous phenolic peroxidases,” Scientific Reports, vol. 10, 2020, Art. no. 16303, doi: 10.1038/s41598-020-73548-5.

Full Text: PDF

DOI: 10.14416/j.asep.2024.06.003

Refbacks

  • There are currently no refbacks.