Page Header

A Review of Sugarcane Biorefinery: From Waste to Value-Added Products

Sukunya Areeya, Elizabeth Jayex Panakkal, Punyanuch Kunmanee, Atthasit Tawai, Suksun Amornraksa, Malinee Sriariyanun, Apinya Kaoloun, Nina Hartini, Yu-Shen Cheng, Mohamed Kchaou, Srideep Dasari, Marttin Paulraj Gundupalli

Abstract


The sugarcane industry is one of the agricultural sectors for the production of commodity products that can generate sugars along with byproducts such as straw, bagasse, and molasses. When subjected to effective processing, these byproducts of sugarcane cease to be categorized as waste, as they can be converted into resources rich in carbon for use in biorefineries. Numerous conversion technologies consisting of thermochemical, biochemical, and chemical processes of biorefinery are also applied to produce high-value products, either from 1st Generation (molasses feedstock) or through integrated 1st Generation and 2nd Generation configurations (molasses and sugarcane lignocellulose feedstock). This review focuses on recent progress in techniques for maximizing the value of sugarcane, encompassing aspects, such as sugarcane processing, pretreatment methods, and the fermentation of sugar derivatives to six value-added products, namely ethanol, xylitol, butanol, polyhydroxyalkanoates, biogas, and nanocellulose. Furthermore, this review encompasses an examination of the economic and environmental repercussions associated with sugarcane biorefinery. It also explores advancements using cutting-edge technology to address obstacles in industrial production.

Keywords



[1] A. Aguiar, T. S. Milessi, D. R. Mulinari, M. S. Lopes, S. M. da Costa, and R. G. Candido, “Sugarcane straw as a potential second generation feedstock for biorefinery and white biotechnology applications,” Biomass and Bioenergy, vol. 144, Jan. 2021, Art. no. 105896.

 

[2] M. Sriariyanun and B. Dharmalingam, “From waste to wealth: Challenges in producing value-added biochemicals from lignocellulose biorefinery,” Journal of Applied Science and Emerging Technology, vol. 22, no. 3, 2023, doi: 10.14416/ JASET.KMUTNB.2023.03.001.

 

[3] H. Lee, Y. J. Sohn, S. Jeon, H. Yang, J. Son, Y. J. Kim, and S. J. Park, “Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products,” Bioresource Technology, vol. 376, May 2023, Art. no. 128879.

 

[4] N. Kitiborwornkul and M. Sriariyanun, “Bio-circular-green economic model BCG and lignocellulose biorefinery: Advancing sustainable development and climate change mitigation,” The Journal of KMUTNB, vol. 34, no. 1, 2024, doi: 10.14416/j.kmutnb.2023.11.006.

 

[5] V. Phakeenuya and N. Kitiborwornkul, “Recent progress in biorefining process for production of biofuels, biochemicals and biomaterials from lignocellulosic biomass,” The Journal of KMUTNB, vol. 34, no. 4, 2024, doi: 10.14416/ j.kmutnb.2023.03.002.

 

[6] Federal ministry of education and research (BMBF), “National research strategy bioeconomy 2030: Our route towards a biobased economy,” 2011. [Online]. Available: http://biotech2030.ru/ wp-content/uploads/docs/int/bioeconomy_2030_ germany.pdf

 

[7] M. Shahbandeh, “Global sugar production by leading country 2022/23,” 2023. [Online]. Available: https://www.statista.com/statistics/ 495973/sugar-production-worldwide/

 

[8] Knoema®, “Sugar cane area harvested,” 2002. [Online]. https://knoema.com/atlas/topics/ Agriculture/Crops-Production-Area-Harvested/ Sugar-cane-area-harvested

 

[9] NSTDA, “Bioeconomy,” 2019. [Online]. Available: https://www.mhesi.go.th/images/ STBookSeries/BS005Bioeconomy.pdf

 

[10] M. Sriariyanun, M. P. Gundupalli, V. Phakeenuya, T. Phusamtisampan, Y. S. Cheng, and P. Venkatachalam, “Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms,” Journal of Applied Science and Engineering, vol. 27, no. 2, pp. 1985–2005, 2024.

 

[11] L. Bhatia, R. K. Bachheti, V. K. Garlapati, and A. K. Chandel, “Third-generation biorefineries: A sustainable platform for food, clean energy, and nutraceuticals production,” Biomass Conversion and Biorefinery, vol. 12, pp. 4215–4230, Jul. 2020.

 

[12] T. Morakile, M. Mandegari, S. Farzad, and J. F. Görgens, “Comparative techno-economic assessment of sugarcane biorefineries producing glutamic acid, levulinic acid and xylitol from sugarcane,” Industrial Crops and Products, vol. 184, Sep. 2022, Art. no.115053.

 

[13] Q. U. A. Raza, M. A. Bashir, A. Rehim, M. U. Sial, H. M. Ali Raza, H. M. Atif, and Y. Geng, “Sugarcane industrial byproducts as challenges to environmental safety and their remedies: A review,” Water, vol. 13, no. 24, Nov. 2021, Art. no. 3495.

 

[14] K. Prueksakorn, S. H. Gheewala, M. Sagisaka and Y. Kudoh, “Sugarcane biorefinery complex in Thailand and a proposed method to cope with apportioning its environmental burdens to co-products,” Journal of Sustainable Energy and Environment, vol. 5, pp. 95–103, 2015.

 

[15] F. Santos, P. Eichler, G. Machado, J. De Mattia and G. De Souza, “By-products of the sugarcane industry,” in Sugarcane Biorefinery, Technology and Perspectives. Massachusetts: Academic Press, pp. 21–48, 2022.

 

[16] H. U. Ghani and S. H. Gheewala, “Life cycle assessment of a sugarcane biorefinery complex in Pakistan,” KMUTT Research & Development Journal, vol. 14, no. 3, pp. 359–370, 2018.

 

[17] A. Kumar, V. Kumar, and B. Singh, “Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective,” International Journal of Biological Macromolecules, vol. 169, no. 1, pp. 4215–4230, 2021.

 

[18] N. M. Holden, A. M. Neill, J. C. Stout, D. O’Brien, and M. A. Morris, “Biocircularity: A framework to define sustainable, circular bioeconomy,” Circular Economy and Sustainability, vol. 3, no. 1, pp. 77–91, Jun. 2022.

 

[19] T. Phusantisampan and N. Kitiborwornkul, “Progress in chemical pretreatment of lignocellulose biomass for applications in biorefinery,” The Journal of KMUTNB, vol. 32, no. 4, pp. 1087–1101, 2022, doi: 10.14416/j. kmutnb.2022.09.018.

 

[20] V. C. Igbokwe, F. N. Ezugworie, C. O. Onwosi, G. O. Aliyu, and C. J. Obi, “Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy,” Journal of Environmental Management, vol. 305, Mar. 2022, Art. no. 114333.

 

[21] J. Iyyappan, B. Gurunathan, M. Gopinath, A. Vaishnavi, S. Prathiba, V. Kanishka, and V. Dhithya, “Advances and sustainable conversion of waste lignocellulosic biomass into biofuels,” in Biofuels and Bioenergy. Amsterdam. Netherlands: Elsevier, pp. 167–206, 2022.

 

[22] G. A. Płaza and D. Wandzich, “Biorefineries– new green strategy for development of smart and innovative industry,” Management Systems in Production Engineering, vol. 23, no. 3, pp. 150–155, Mar. 2016.

 

[23] T. Ruensodsai and M. Sriariyanun, “Sustainable development and progress of lignocellulose conversion to platform chemicals,” The Journal of KMUTNB, vol. 32, no. 4, pp. 815–818, 2022, doi: 10.14416/j.kmutnb.2022.03.001.

 

[24] M. P. Gundupalli and M. Sriariyanun, “Recent trends and updates for chemical pretreatment of lignocellulosic biomass,” Applied Science and Engineering Progress, vol. 16, no. 1, 2022, Art. no. 5842, doi: 10.14416/j.asep.2022.03.002.

 

[25] E. J. Panakkal and M. Sriariyanun, “Valorization of lignocellulosic biomass to value added products,” The Journal of KMUTNB, vol. 33, no. 1, pp. 1–3, 2023.

 

[26] H. Chen and L. Wang, “Pretreatment strategies for biochemical conversion of biomass,” in Technologies for Biochemical Conversion of Biomass. Massachusetts: Academic Press, pp. 21–64, 2017.

 

[27] H. Stichnothe, H. Storz, D. Meier, I. De Bari, and S. Thomas, “Development of second-generation biorefineries,” in Developing the Global Bioeconomy. Massachusetts: Academic Press, pp. 11–40, 2016.

 

[28] J. Komandur and K. Mohanty, “Fast pyrolysis of biomass and hydrodeoxygenation of bio-oil for the sustainable production of hydrocarbon biofuels,” in Hydrocarbon Biorefinery. Amsterdam, Netherlands: Elsevier, pp. 47–76, 2022.

 

[29] M. Jędrzejczyk, E. Soszka, M. Czapnik, A. M. Ruppert, and J. Grams, “Physical and chemical pretreatment of lignocellulosic biomass,” in Second and Third Generation of Feedstocks. Amsterdam, Netherlands: Elsevier, pp. 143–196, 2022.

 

[30] J. U. Hernández-De Lira, I. O. Cruz-Santos, M. M. A. Saucedo-Luevanos, F. Hernández-Terán, and N. Balagurusamy, “Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: Current state, challenges, and opportunities,” Applied Sciences, vol. 9, no. 18, 2019, Art. no. 3721.

 

[31] M. M. D El-Dalatony, E. S. Salama, M. B. Kurade, S. H. Hassan, S. E. Oh, S. Kim, and B. H. Jeon, “Utilization of microalgal biofractions for bioethanol, higher alcohols, and biodiesel production: A review,” Energies, vol. 10, no. 12, 2017, Art. no. 2110.

 

[32] S. Areeya, E. J. Panakkal, M. Sriariyanun, T. Kangsadan, A. Tawai, S. Amornraksa, U. W. Hartley, and P. Yasurin, “A review on chemical pretreatment of lignocellulosic biomass for the production of bioproducts: Mechanisms, challenges and applications,” Applied Science and Engineering Progress, vol. 16, no. 3, pp. 6767– 6767, 2023, doi: 10.14416/j.asep.2023.02.008.

 

[33] D. Jose, N. Kitiborwornkul, M. Sriariyanun, and K. Keerthi, “A review on chemical pretreatment methods of lignocellulosic biomass: Recent advances and progress,” Applied Science and Engineering Progress, vol. 15, no. 4, pp. 6210– 6210, 2022, doi: 10.14416/j.asep.2022.08.001.

 

[34] B. Paramasivam, R. Q. Mensah, and M. Sriariyanun, “Advantages and significance of acid and alkali pretreatment of lignocellulose biomass in biorefining process,” Applied Science and Engineering Progress, vol. 17, no. 1, pp. 6913– 6913, 2024, doi: 10.14416/j.asep.2023.05.004.

 

[35] R. Sakthivel, G. V. Harshini, M. S. Vardhan, A. Vinod, and K. Gomathi, “Biomass energy conversion through pyrolysis: A ray of hope for the current energy crisis,” in Green Energy Systems. Massachusetts: Academic Press, pp. 37–68, 2022.

 

[36] S. Z. A. H. Saadon, N. B. Osman, and S. Yusup, “Pretreatment of fiber-based biomass material for lignin extraction,” in Value-chain of biofuels. Amsterdam, Netherlands: Elsevier, pp. 105–135, 2022.

 

[37] E. Tomás-Pejó, P. Alvira, M. Ballesteros, and M. J. Negro, “Pretreatment technologies for lignocellulose-to-bioethanol conversion,” in Biofuels. Amsterdam, Netherlands: Academic press, pp. 149–176, 2011.

 

[38] M. Sriariyanun, E. J. Panakkal, N. Kitiborwornkul, Y. S. Cheng, and P. L. Show, “Ionic liquid-mediated processing of cellulose-based nanomaterials and its application in renewable energy,” in Ionic Liquids and Their Application in Green Chemistry. Massachusetts: Elsevier, pp. 137–163, 2023.

 

[39] C. Xiao, Q. Xu, D. Gong, J. Qian, and H. Xie, “Ionic liquids-based organic electrolytes for lignocellulose pretreatment towards enhanced enzymatic hydrolysis,” in Encyclopedia of Ionic Liquids, S. Zhang, Eds. Singapore: Springer, pp. 1–11, 2022.

 

[40] D. Jose, A. Tawai, D. Divakaran, D. Bhattacharyya, P. Venkatachalam, P. Tantayotai, and M. Sriariyanun, “Integration of deep eutectic solvent in biorefining process of lignocellulosic biomass valorization,” Bioresource Technology Reports, vol. 21, Feb. 2023, Art. no. 101365.

 

[41] C. Y. Ma, L. H. Xu, C. Zhang, K. N. Guo, T. Q. Yuan, and J. L. Wen, “A synergistic hydrothermal-deep eutectic solvent (DES) pretreatment for rapid fractionation and targeted valorization of hemicelluloses and cellulose from poplar wood,” Bioresource Technology, vol. 341, Dec. 2021, Art. no. 125828.

 

[42] H. Xu, J. Peng, Y. Kong, Y. Liu, Z. Su, B. Li, X. Song, S. Liu, and W. Tian, “Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: A review,” Bioresource Technology, vol. 310, Aug. 2020, Art. no. 123416.

 

[43] A. Anu, R. C. Kuhad, A. Rapoport, V. Kumar, D. Singh, S. K. Tiwari, S. Ahlawat, and B. Singh, “Biological pretreatment of lignocellulosic biomass: An environment-benign and sustainable approach for conversion of solid waste into value-added products,” Critical Reviews in Environmental Science and Technology, vol. 54, no. 10, pp. 1–26, Nov. 2023.

 

[44] K. Laçın, B. Çaloğlu, and B. Binay, “Anaerobic digestion methods for the production of fuels,” in Bioenergy Engineering. Sawston, UK: Woodhead Publishing, pp. 201–235, 2023.

 

[45] M. Ferdeș, M. N. Dincă, G. Moiceanu, B. Ș. Zăbavă, and G. Paraschiv, “Microorganisms and enzymes used in the biological pretreatment of the substrate to enhance biogas production: A review,” Sustainability, vol. 12, no. 17, 2020, Art. no. 7205.

 

[46] M. E. Vallejos, M. D. Zambon, M. C. Area, and A. A. da Silva Curvelo, “Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification,” Industrial Crops and Products, vol. 65, pp. 349–353, Mar. 2015.

 

[47] K. C. Khaire, V. S. Moholkar and A. Goyal, “Bioconversion of sugarcane tops to bioethanol and other value added products: An overview,” Materials Science for Energy Technologies, vol. 4, pp. 54–68, 2021.

 

[48] M. E. Vallejos, M. D. Zambon, M. C. Area, and A. A. da Silva Curvelo, “Low liquid–solid ratio (LSR) hot water pretreatment of sugarcane bagasse,” Green Chemistry, vol. 14, no. 7, pp. 1982–1989, 2012.

 

[49] A. K. Mali and P. Nanthagopalan, “Thermo-mechanical treatment of sugarcane bagasse ash with very high LOI: A pozzolanic paradigm,” Construction and Building Materials, vol. 288, Jun. 2021, Art. no. 122988.

 

[50] P. Li, C. Yang, Z. Jiang, Y. Jin, and W. Wu, “The bioeconomy and its untenable growth promises: Reality checks from research,” Journal of Bioresources and Bioproducts, vol. 8, no. 1, pp. 33–44, Feb. 2023.

 

[51] C. Chotirotsukon, M. Raita, V. Champreda, and N. Laosiripojana, “Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification,” Industrial Crops and Products, vol. 141, Dec. 2019, Art. no. 111753.

 

[52] S. Sabiha-Hanim and N. A. A. Halim, “Sugarcane bagasse pretreatment methods for ethanol production,” in Fuel Ethanol Production from Sugarcane. London, UK: IntechOpen, pp. 63–79, 2018.

 

[53] S. Bhagwat, K. Khaire, S. Tiwari, and A. Kumar, “Comparison of various pretreatments on biomass for increased enzymatic saccharification for the production of biofuel,” International Journal of Environmental Science and Technology, vol. 5, no. 4, pp. 2596–2604, 2016.

 

[54] S. G. Karp, A. L. Woiciechowski, V. T. Soccol, and C. R. Soccol, “Pretreatment strategies for delignification of sugarcane bagasse: A review,” Brazilian Archives of Biology and Technology, vol. 56, no. 4, pp. 679–689, Aug. 2013.

 

[55] L. W. Yoon, G. C. Ngoh, A. S. M. Chua, and M. A. Hashim, “Comparison of ionic liquid, acid and alkali pretreatments for sugarcane bagasse enzymatic saccharification,” Journal of Chemical Technology & Biotechnology, vol. 86, no. 10, pp. 1342–1348, Oct. 2011.

 

[56] K. Zhang, Z. Pei, and D. Wang, “Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review,” Bioresource Technology, vol. 199, pp. 21–33, Jan. 2016.

 

[57] Y. Chen and T. Mu, “Application of deep eutectic solvents in biomass pretreatment and conversion,” Green Energy & Environment, vol. 4, no. 2, pp. 95–115, Apr. 2019.

 

[58] L. Lomba, M. P. Ribate, E. Sangüesa, J. Concha, M. P. Garralaga, D. Errazquin, C. B. García, and B. Giner, “Deep eutectic solvents: Are they safe?,” Applied Sciences, vol. 11, no. 21, 2021, Art. no. 10061.

 

[59] V. R. Chourasia, A. Pandey, K. K. Pant, and  R. J. Henry, “Improving enzymatic digestibility of sugarcane bagasse from different varieties of sugarcane using deep eutectic solvent pretreatment,” Bioresource Technology, vol. 337, Oct. 2021, Art. no. 125480.

 

[60] D. Batista Meneses, G. Montes de Oca-Vásquez, J. R. Vega-Baudrit, M. Rojas-Álvarez, J. Corrales- Castillo, and L. C. Murillo-Araya, “Pretreatment methods of lignocellulosic wastes into value-added products: Recent advances and possibilities,” Biomass Conversion and Biorefinery, vol. 12, pp. 547–564, Apr. 2020.

 

[61] H. Chen and L. Wang, “Chapter 6-sugar strategies for biomass biochemical conversion,” in Technologies for Biochemical Conversion of Biomass. Amsterdam, Netherlands: Academic Press, 2017, pp. 137–164.

 

[62] Z. Fan, “Consolidated bioprocessing for ethanol production,” in Biorefineries. Massachusetts: Elsevier, pp. 141–160, 2014.

 

[63] A. Sánchez-Pascuala, V. de Lorenzo, and P. I. Nikel, “Refactoring the Embden–Meyerhof–Parnas pathway as a whole of portable GlucoBricks for implantation of glycolytic modules in Gram-negative bacteria,” ACS Synthetic Biology, vol. 6, no. 5, pp. 793–805, 2017.

 

[64] N. Maleki, M. Safari, and M. A. Eiteman, “Conversion of glucose‐xylose mixtures to pyruvate using a consortium of metabolically engineered Escherichia coli,” Engineering in Life Sciences, vol. 18, no. 1, pp. 40–47, 2018.

 

[65] M. Akram, S. M. Ali Shah, N. Munir, M. Daniyal, I. M. Tahir, Z. Mahmood, M. Irshad, M. Akhlaq, S. Sultana, and R. Zainab, “Hexose monophosphate shunt, the role of its metabolites and associated disorders: A review,” Journal of Cellular Physiology, vol. 234, no. 9, pp. 14473–14482, 2019.

 

[66] K. Shimizu, “Main metabolism,” in Bacterial Cellular Metabolic Systems. Massachusetts: Elsevier, pp. 1–54, 2013.

 

[67] J. M. R. Gallo and M. A. Trapp, “The chemical conversion of biomass-derived saccharides: An overview,” Journal of the Brazilian Chemical Society, vol. 28, no. 9, pp. 1586–1607, 2017.

 

[68] H. Chen and L. Wang, Technologies for BioChemical Conversion of Biomass. Amsterdam, Netherlands: Academic Press, 2016, pp. 1–10.

 

[69] A. Srimalanon and P. Kachapongkun, “Synthesis gas production with gasification technology from municipal solid waste,” Applied Science and Engineering Progress, vol. 16, no. 4, 2023, Art. no. 6633, doi: 10.14416/j.asep.2023.01.002.

 

[70] A. H. Sarosa, V. Nurhadianty, N. H. F. N. Dian, F. N. Anita, A. F. Noerdinna, and S. D. A. Rizqy, “The kinetic study of dampit robusta coffee caffeine degradation by saccharomyces cerevisiae,” Applied Science and Engineering Progress, vol. 17, no. 1, 2024, Art. no. 6981, doi: 10.14416/j.asep.2023.07.004.

 

[71] P. K. Das, A. Sahoo, and V. D. Veeranki, “Engineered yeasts for lignocellulosic bioethanol production,” in Advances in Yeast Biotechnology for Biofuels and Sustainability. Massachusetts: Elsevier, pp. 47–72, 2023.

 

[72] Y. Sewsynker-Sukai, A. N. David, D. C. Rorke, I. A. Sanusi, G. S. Aruwajoye, E. L. Meyer, and E. B. G. Kana, “Integrated biorefineries: The path forward,” in Advances in Lignocellulosic Biofuel Production Systems. Sawston, UK: Woodhead Publishing, pp. 267–304, 2023.

 

[73] G. Shen, X. Yuan, S. Chen, S. Liu, and M. Jin, “High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/ detoxifying pretreated biomass,” Renewable Energy, vol. 186, pp. 904–913, Mar. 2022.

 

[74] J. K. Saini, “Enhanced cellulosic ethanol production via fed-batch simultaneous saccharification and fermentation of sequential dilute acid-alkali pretreated sugarcane bagasse,” Bioresource Technology, vol. 372, Mar. 2023, Art. no. 128671.

 

[75] C. A. Prado, M. S. Cunha, R. Terán-Hilares, G. L. Arruda, F. A. F. Antunes, B. Pereira, S. S. da Silva, and J. C. Santos, “Hydrodynamic cavitation–assisted oxidative pretreatment and sequential production of ethanol and xylitol as innovative approaches for sugarcane bagasse biorefineries,” BioEnergy Research, vol. 16, pp. 2229–2241, Jan. 2023.

 

[76] S. de Souza Queiroz, F. M. Jofre, H. A. dos Santos, A. F. Hernandez-Perez, and M. D. G. D. A. Felipe, “Xylitol and ethanol co-production from sugarcane bagasse and straw hemicellulosic hydrolysate supplemented with molasses,” Biomass Conversion and Biorefinery, vol. 13, no. 4, pp. 3143–3152, May 2021.

 

[77] H. Xia, L. Zhang, H. Hu, S. Zuo, and L. Yang, “Efficient hydrogenation of xylose and hemicellulosic hydrolysate to xylitol over Ni-Re bimetallic nanoparticle catalyst,” Nanomaterials, vol. 10, no. 1, p. 73, 2020.

 

[78] V. Ahuja, A. K. Bhatt, S. Mehta, V. Sharma, R. K. Rathour, and Sheetal, “Xylitol production by Pseudomonas gessardii VXlt-16 from sugarcane bagasse hydrolysate and cost analysis,” Bioprocess and Biosystems Engineering, vol. 45, no. 6, pp. 1019–1031, Mar. 2022.

 

[79] C. I. Chukwuma and M. S. Islam, “Xylitol: One Name, Numerous Benefits,” in Sweeteners. Cham: Springer, Aug. 2016, pp. 1–27.

 

[80] M. E Delfín-Ruíz, M. G. Aguilar-Uscanga and J. Gómez-Rodríguez, “Xylitol production by candida tropicalis IEC5-ITV using sugarcane bagasse acid pretreated,” Sugar Tech, vol. 25, pp. 1231–1240, Apr. 2023.

 

[81] I. D. A. Bianchini, L. Sene, M. A. A. da Cunha, and M. D. G. D. A. Felipe, “Short-term adaptation strategy improved xylitol production by Candida guilliermondii on sugarcane bagasse hemicellulosic hydrolysate,” BioEnergy Research, vol. 15, no. 2, pp. 1182–1194, Sep. 2021.

 

[82] A. Thontowi, A. Purnawan, A. Kanti, and E. Hermiati, “Bioconversion of Xylose from sugarcane Bagasse hydrolysate to xylitol by Candida carpophila InaCC56,” in AIP Conference Proceedings, 2023, vol. 2956, Art. no. 020007.

 

[83] L. Gai, E. F. Ren, W. Tian, D. Niu, W. Sun, F. Hang, and K Li, “Ultrasonic-assisted dual-alkali pretreatment and enzymatic hydrolysis of sugarcane bagasse followed by candida tropicalis fermentation to produce xylitol,” Frontiers in Nutrition, vol. 9, May 2022, Art. no. 913106.

 

[84] T. Thanapornsin, L. Sirisantimethakom, L. Laopaiboon, and P. Laopaiboon, “Effectiveness of low-cost bioreactors integrated with a gas stripping system for butanol fermentation from sugarcane molasses by Clostridium beijerinckii,” Fermentation, vol. 8, no. 5, p. 214, 2022.

 

[85] J. Xia, S. Jiang, S. Dong, Y. Liao, and Y. Zhou, “The Role of Post-Translational Modifications in Regulation of NLRP3 inflammasome activation,” International Journal of Molecular Sciences, vol. 24, no. 7, p. 6126, 2023.

 

[86] A. M. Zetty-Arenas, L. P. Tovar, R. F. Alves, A. P. Mariano, W. van Gulik, R. M. Filho, and S. Freitas, “Co-fermentation of sugarcane bagasse hydrolysate and molasses by Clostridium saccharoperbutylacetonicum: Effect on sugar consumption and butanol production,” Industrial Crops and Products, vol. 167, Sept. 2021, Art. no. 113512.

 

[87] R. Gao, L. Xiong, M. Wang, F. Peng, H. Zhang, and X. Chen, “Production of acetone-butanol-ethanol and lipids from sugarcane molasses via coupled fermentation by Clostridium acetobutylicum and oleaginous yeasts,” Industrial Crops and Products, vol. 185, Oct. 2022, Art. no. 115131.

 

[88] S. J. Chacon, G. Matias, T. C. Ezeji, R. Maciel Filho, and A. P. Mariano, “Three-stage repeated-batch immobilized cell fermentation to produce butanol from non-detoxified sugarcane bagasse hemicellulose hydrolysates,” Bioresource Technology, vol. 321, Feb. 2021, Art. no. 124504.

 

[89] J. S. Kingsly, N. Chathalingath, S. A. Parthiban, D. Sivakumar, S. Sabtharishi, V. Senniyappan, V. S. Duraisamy, A. Jasmine, and A. Gunasekar, “Utilization of sugarcane molasses as the main carbon source for the production of polyhydroxyalkanoates from Enterobacter cloacae,” Energy Nexus, vol. 6, Jun. 2022, Art. no. 100071.

 

[90] M. Attapong, C. Chatgasem, W. Siripornadulsil, and S. Siripornadulsil, “Ability of converting sugar cane bagasse hydrolysate in to polyhydroxybutyrate (PHB) by bacteria isolated from stressed environmental soils,” Biocatalysis and Agricultural Biotechnology, vol. 50, Jul. 2023, Art. no. 102676.

 

[91] H. J. C. Barrameda, P. J. Requiso, C. G. Alfafara, F. R. P. Nayve Jr, R. L. G. Ventura, and J. R. S. Ventura, “Hydrolysate production from sugarcane bagasse using steam explosion and sequential steam explosion-dilute acid pretreatment for polyhydroxyalkanoate fermentation,” Bioactive Carbohydrates and Dietary Fibre, vol. 30, Nov. 2023, Art. no. 100376.

 

[92] S. Y. Jo, Y. J. Sohn, S. Y. Park, J. Son, J. I. Yoo, K. A. Baritugo, Y. David, K. H. Kang, H. Kim, J. Choi, M. N. Rhie, H. T. Kim, J. C. Joo, and S. J. Park, “Biosynthesis of polyhydroxyalkanoates from sugarcane molasses by recombinant Ralstonia eutropha strains,” Korean Journal of Chemical Engineering, vol. 38, no. 7, pp. 1452–1459, 2021.

 

[93] S. Sumardiono, H. H. A. Matin, I. Sulistianingtias, T. Y. Nugroho, and B. Budiyono, “Effect of physical and biological pretreatment on sugarcane bagasse waste-based biogas production,” Materials Today: Proceedings, vol. 87, no. 2, pp. 41–44, 2023.

 

[94] A. A. S. Ghaleb, S. R. M. Kutty, G. H. A. Salih, A. H. Jagaba, A. Noor, V. Kumar, N. M. Y. Almahbashi, A. A. H. Saeed, and B. N. Saleh Al-dhawi, “Sugarcane bagasse as a co-substrate with oil-refinery biological sludge for biogas production using batch mesophilic anaerobic co-digestion technology: Effect of carbon/nitrogen ratio,” Water, vol. 13, no. 5, p. 590, 2021.

 

[95] S. Eshore, C. Mondal, and A. Das, “Production of biogas from treated sugarcane bagasse,” International Journal of Scientific Engineering and Technology, vol. 6, no. 7, pp. 224–227, 2017.

 

[96] S. Ramesh, P. Doddipatla, and S. Pamidipati, “Optimization of parameters for biological pre-treatment route for the production of nanocellulose from sugarcane bagasse,” Biomass Conversion and Biorefinery, vol. 13, pp. 2293–2303, Jan. 2021.

 

[97] S. S. A'Yuni Hisbiyah and L. Nurfadlilah, “Simultaneous effect of ultrasonic and chemical treatment on the extraction of nanocellulose from sugarcane bagasse,” Jurnal Kimia Sains dan Aplikasi, vol. 24, no. 5, pp. 146–151, 2021.

 

[98] A. Barakat, A. Fahmy, S. H. El-Moslamy, E. M. El-Fakharany, E. A. Kamoun, and M. Bassyouni, “Cellulose nanocrystals from sugarcane bagasse and its graft with GMA: Synthesis, characterization, and biocompatibility assessment,” Journal of Applied Pharmaceutical Science, vol. 11, no. 2, pp. 114–125, Feb. 2021.

 

[99] M. Asem, D. N. Jimat, N. H. S. Jafri, W. M. F. W. Nawawi, N. F. M. Azmin, and M. F. Abd Wahab, “Entangled cellulose nanofibers produced from sugarcane bagasse via alkaline treatment, mild acid hydrolysis assisted with ultrasonication,” Journal of King Saud University-Engineering Sciences, vol. 35, no. 1, pp. 24–31, Jan. 2023.

 

[100] Z. Qiu, X. Han, A. Fu, Y. Jiang, W. Zhang, C. Jin, D. Li, J. Xia, J. He, Y. Deng, N. Xu, X. Liu, A. He, and H. J. Gu, “Enhanced cellulosic d-lactic acid production from sugarcane bagasse by pre-fermentation of water-soluble carbohydrates before acid pretreatment,” Bioresource Technology, vol. 368, Jan. 2023, Art. no. 128324.

 

[101] X. Cheng, L. Zhang, F. Zhang, P. Li, L. Ji, K. Wang, and J. Jiang, “Coproduction of xylooligosaccharides, glucose, and less-condensed lignin from sugarcane bagasse using syringic acid pretreatment,” Bioresource Technology, vol. 386, Oct. 2023, Art. no. 129527.

 

[102] J. Zhang, K. Li, S. Liu, S. Huang, and C. Xu, “Alkaline hydrogen peroxide pretreatment combined with bio-additives to boost high-solids enzymatic hydrolysis of sugarcane bagasse for succinic acid processing,” Bioresource Technology, vol. 345, Feb. 2022, Art. no. 126550.

 

[103] Z. Sabara, A. Mutmainnah, U. Kalsum, I. N. Afiah, I. Husna, A. Saregar, and R. Umam, “Sugarcane bagasse as the source of nanocrystalline cellulose for gelatin-free capsule shell,” International Journal of Biomaterials, vol. 2022, 2022, Art. no. 9889127.

 

[104] F. Deeba, K. K. Kumar, S. A. Wani, A. K. Singh, J. Sharma, and N. A. Gaur, “Enhanced biodiesel and β-carotene production in Rhodotorula pacifica INDKK using sugarcane bagasse and molasses by an integrated biorefinery framework,” Bioresource Technology, vol. 351, May 2022, Art. no. 127067.

 

[105] H. T. Tran, A. D. K. Deshan, W. Doherty, D. Rackemann, and L. Moghaddam, “Production of rigid bio-based polyurethane foams from sugarcane bagasse,” Industrial Crops and Products, vol. 188, Nov. 2022, Art. no. 115578.

 

[106] A. Shaji, Y. Shastr, V. Kumar, V. V. Ranade, and N. Hindle, “Economic and environmental assessment of succinic acid production from sugarcane bagasse,” ACS Sustainable Chemistry & Engineering, vol. 9, no. 38, pp. 12738– 12746, Sep. 2021.

 

[107] W. Sornlek, K. Sae-Tang, A. Watcharawipas, S. Wongwisansri, S. Tanapongpipat, L. Eurwilaichtr, V. Champreda, W. Runguphan, P. J. Schaap, and V. A. Martins dos Santos, “D-lactic acid production from sugarcane bagasse by genetically engineered saccharomyces cerevisiae,” Journal of Fungi, vol. 8, no. 8, p. 816, 2022.

 

[108] C. K. Yamakawa, S. T. Rojas, W. E. Herrera, C. E. Rossell, M. R. W. Maciel, and R. M. Filho, “Recovery and characterization of cellulosic ethanol from fermentation of sugarcane bagasse,” Chemical Engineering Research and Design, vol. 196, pp. 568–576, Aug. 2023.

 

[109] B. C. Fonseca, V. Reginatto, J. C. López-Linares, S. Lucas, M. T. García-Cubero, and M. Coca, “Acetic acid as catalyst for microwave-assisted pretreatment of sugarcane straw aids highly specific butyric acid bioproduction,” Industrial Crops and Products, vol. 157, Dec. 2020, Art. no. 112936.

 

[110] B. C. Fonseca, V. Reginatto, J. C. López- Linares, S. Lucas, M. T. García-Cubero, and M. Coca, “Ideal conditions of microwave-assisted acid pretreatment of sugarcane straw allow fermentative butyric acid production without detoxification step,” Bioresource Technology, vol. 329, Jun. 2021, Art. no. 124929.

 

[111] S. Bilatto, J. M. Marconcini, L. H. Mattoso, and C. S. Farinas, “Lignocellulose nanocrystals from sugarcane straw,” Industrial Crops and Products, vol. 157, Dec. 2020, Art. no. 112938.

 

[112] L. B. Brenelli, R. Bhatia, D. T. Djajadi, L. G. Thygesen, S. C. Rabelo, D. J. Leak, T. T. Franco, and J. A. Gallagher, “Xylo-oligosaccharides, fermentable sugars, and bioenergy production from sugarcane straw using steam explosion pretreatment at pilot-scale,” Bioresource Technology, vol. 357, Aug. 2022, Art. no. 127093.

 

[113] L. M. Dias, F. S. P. P. Neto, M. Brienzo, S. C. de Oliveira, and F. Masarin, “Experimental design, modeling, and optimization of production of xylooligosaccharides by hydrothermal pretreatment of sugarcane bagasse and straw,” Biomass Conversion and Biorefinery, vol. 13, pp. 12777–12794, Jan. 2022.

 

[114] N. Yu, L. Tan, Z. Y. Sun, Y. Q. Tang, and K. Kida, “Production of bio-ethanol by integrating microwave-assisted dilute sulfuric acid pretreated sugarcane bagasse slurry with molasses,” Applied biochemistry and biotechnology, vol. 185, pp. 191–206, Nov. 2017.

 

[115] M. Fan, S. Zhang, G. Ye, H. Zhang, and J. Xie, “Integrating sugarcane molasses into sequential cellulosic biofuel production based on SSF process of high solid loading,” Biotechnology for Biofuels, vol. 11, p. 329, 2018.

 

[116] P. Basnett, E. Marcello, B. Lukasiewicz, R. Nigmatullin, A. Paxinou, M. H. Ahmad, B. Gurumayum, and I. Roy, “Antimicrobial materials with lime oil and a poly (3-hydroxyalkanoate) produced via valorisation of sugar cane molasses,” Journal of Functional Biomaterials, vol. 11, no. 2, p. 24, 2020.

 

[117] P. E. Sineli, D. D. Maza, M. J. Aybar, L. I. Figueroa, and S. C. Viñarta, “Bioconversion of sugarcane molasses and waste glycerol on single cell oils for biodiesel by the red yeast Rhodotorula glutinis R4 from Antarctica,” Energy Conversion and Management: X, vol. 16, Dec. 2022, Art. no. 100331.

 

[118] L. Guo, L. Lu, H. Wang, X. Zhang, G. Wang, T. Zhao, G. Zheng, and C. Qiao, “Effects of Fe2+ addition to sugarcane molasses on poly-γ-glutamic acid production in Bacillus licheniformis CGMCC NO. 23967,” Microbial Cell Factories, vol. 21, no. 1, p. 37, Feb. 2023.

 

[119] B. Vignesh Kumar, B. Muthumari, M. Kavitha, J. K. John Praveen Kumar, S. Thavamurugan, A. Arun, and M. J. Basu, “Studies on optimization of sustainable lactic acid production by bacillus amyloliquefaciens from sugarcane molasses through microbial fermentation,” Sustainability, vol. 14, no. 12, p. 7400, 2022.

 

[120] M. Bilal, D. S. Vilar, K. I. B. Eguiluz, L. F. R. Ferreira, P. Bhatt, and H. M. Iqbal, “Biochemical conversion of lignocellulosic waste into renewable energy,” in Advanced Technology for the Conversion of Waste into Fuels and Chemicals. Sawston, UK: Woodhead, pp. 147–171, 2021.

Full Text: PDF

DOI: 10.14416/j.asep.2024.06.004

Refbacks

  • There are currently no refbacks.