Page Header

Rapid Microwave Method to Enhance the Characteristics of Fe3O4 and Fe3O4/SiO2 Nanoparticles

Lety Trisnaliani, Sri Haryati, Muhammad Djoni Bustan

Abstract


The application of nanoparticles can increase the number of products and protect against the deadly effects of industrial processes. Generally, nanoparticle technology offers numerous benefits, including reduced energy consumption and waste generation. Therefore, this study aimed to prepare Fe3O4and Fe3O4/SiO2nanoparticles using rapid microwave method. The instruments used for analysis included x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscopy-dispersive x-ray (SEM-EDX), and ultraviolet-visible diffuse reflectance spectroscopy (UV-DRS). The combustion process was carried out using a microwave to produce sufficient energy for forming Fe3O4nanoparticles. The homogeneous heating distribution process in the raw material effectively formed different initial phases and nanoparticle morphologies within a few minutes. The results showed that the application of rapid and efficient microwave provided good monodispersity, uniform core-shell structure, and high magnetization. The calculated optical bandgap values for Fe3O4and Fe3O4/SiO2ranged from 1.77–2.33 eV. According to magnetic analysis, Fe3O4nanoparticles showed superparamagnetic behavior at room temperature with a value of 32–40 emu/g, while Fe3O4/SiO2powder had 9–23 emu/g. The analysis of SEM-EDX showed that SiO2had the potential to prevent particle aggregation and stabilize the nanoparticles prepared. Moreover, further study is recommended to modify the product with other materials, such as TiO2, for photocatalysts.


Keywords



[1] P. Wasilewski and G. Kletetschka, “Iron ore to lodestone: With lightning assist,” Journal of Applied Geophysics, vol. 219, 2023, Art. no. 105225.

 

[2] A. A. Mills, “The Lodestone: History, physics, and formation,” Annals of Science, vol. 61, no. 3, 2004, Art. no. 273.

 

[3] D. W. E. Systems and E. Nsw, “The lodestone, from plato to kircher the lodestone, from plato to kircher,” Preview, vol. 2471, no. 2014, 2019.

 

[4] A. K. Vishwakarma, B. S. Yadav, A. K. Singh, S. Kumar, and N. Kumar, “Magnetically recyclable ZnO coated Fe3O4 nanocomposite for MO dye degradation under UV-light irradiation,” Solid State Sciences, vol. 145, 2023, Art. no. 107312.

 

[5] A. Halfadji, M. Naous, K. nadia Kharroubi, F. el zahraà Belmehdi, and S. Rajendrachari, “An ultrasonic-assisted synthesis, characterization, and application of Nano-Fe3O4/TiO2 as nano-catalyst for the removal of organic dye by Like- Photo-Fenton reactions,” Inorganic Chemistry Communications, vol. 158, 2023, Art. no. 111686.

 

[6] X. Tian, X. Xu, G. Bo, X. Su, J. Yan, and Y. Yan, “A 3D flower-like Fe3O4@PPy composite with core-shell heterostructure as a lightweight and efficient microwave absorbent,” Journal of Alloys and Compounds, vol. 923, 2022, Art. no. 166416.

 

[7] F. Bojabady, E. Kamali-Heidari, and S. Sahebian, “Hydrothermal synthesis of highly aligned Fe3O4 nanosplates on nickel foam,” Materials Chemistry and Physics, vol. 305, 2023, Art. no. 127828.

 

[8] N. Acharya, “Magnetically driven MWCNT-Fe3O4-water hybrid nanofluidic transport through a micro-wavy channel: A novel MEMS design for drug delivery application,” Materials Today Communications, vol. 38, 2024, Art. no. 107844.

 

[9] L. Zhang, G. Song, Y. Song, J. Li, Z. Li, X. Yang, Z. Li, X. Li, and Z. Jia, “Ultralight 3D cross-linked reinforced graphene@Fe3O4 composite aerogels for electromagnetic wave absorption,” Materials Research Bulletin, vol. 173, May 2024, Art. no. 112696.

 

[10] T. Hai, K. Sharma, R. K. Marjan, B. Farhang, M. H. Mahmoud, H. Fouad, and W. El-Shafai, “Numerical analysis of the magnetic field impact on hydrothermal characteristics of a microchannel heatsink with Fe3O4 ferrofluid and various pin-fin shapes,” Journal of Magnetism and Magnetic Materials, vol. 585, 2023, Art. no. 171102.

 

[11] D. Rajkumar, A. Subramanyam Reddy, P. V Satya Narayana, K. Jagadeshkumar, and A. J. Chamkha, “Pulsating magnetohydrodynamic flow of Fe3O4- blood based micropolar nanofluid between two vertical porous walls with Cattaneo–Christov heat flux and entropy generation,” Journal of Magnetism and Magnetic Materials, vol. 571, 2023, Art. no. 170564.

 

[12] K. Wang, X. Xu, Y. Li, M. Rong, L. Wang, L. Lu, J. Wang, F. Zhao, B. Sun, and Y. Jiang, “Preparation Fe3O4@chitosan-graphene quantum dots nanocomposites for fluorescence and magnetic resonance imaging,” Chemical Physics Letters, vol. 783, 2021, Art. no. 139060.

 

[13] V. Vatanpour, S. Paziresh, A. H. Behroozi, H. Karimi, M. S. Esmaeili, S. Parvaz, S. I. Ghazanlou, and A. Maleki, “Fe3O4@Gum Arabic modified polyvinyl chloride membranes to improve antifouling performance and separation efficiency of organic pollutants,” Chemosphere, vol. 328, 2023, Art. no. 138586.

 

[14] Y. Zhang, B. Su, Y. Tian, Z. Yu, X. Wu, J. Ding, C. Wu, D. Wei, H. Yin, J. Sun, and H. Fan, “Magnetic manipulation of Fe3O4@BaTiO3 nanochains to regulate extracellular topographical and electrical cues,” Acta Biomaterialia, vol. 168, 2023, Art. no. 470.

 

[15] A. G. Roca, L. Gutiérrez, H. Gavilán, M. E. Fortes Brollo, S. Veintemillas-Verdaguer, and M. del P. Morales, “Design strategies for shape-controlled magnetic iron oxide nanoparticles,” Advanced Drug Delivery Reviews, vol. 138, 2019, Art. no. 68.

 

[16] I. Nkurikiyimfura, Y. Wang, B. Safari, and E. Nshingabigwi, “Temperature-dependent magnetic properties of magnetite nanoparticles synthesized via coprecipitation method,” Journal of Alloys and Compounds, vol. 846, 2020, Art. no. 156344.

 

[17] J. M. M. Silva, P. E. Feuser, R. Cercená, M. Peterson, and A. G. Dal-Bó, “Obtention of magnetite nanoparticles via the hydrothermal method and effect of synthesis parameters,” Journal of Magnetism and Magnetic Materials, vol. 580, 2023, Art. no. 170925.

 

[18] X. Qiao, A. Liu, Z. Li, J. Fan, P. Fan, and M. Fan, “Preparation and properties of dodecylamine microemulsion for the flotation of quartz and magnetite,” Minerals Engineering, vol. 164, 2021, Art. no. 106821.

 

[19] M. B. Polla, J. L. Nicolini, J. Venturini, A. da Cas Viegas, M. A. Zen Vasconcellos, O. R. K. Montedo, and S. Arcaro, “Low-temperature sol–gel synthesis of magnetite superparamagnetic nanoparticles: Influence of heat treatment and citrate–nitrate equivalence ratio,” Ceramics International, vol. 49, no. 5, 2023, Art. no. 7322.

 

[20] M. Haghmohammadi, N. Sajjadi, A. A. Beni, S. M. Hakimzadeh, A. Nezarat, and S. D. Asl, “Synthesis of activated carbon/magnetite nanocatalyst for sono-Fenton-like degradation process of 4-chlorophenol in an ultrasonic reactor and optimization using response surface method,” Journal of Water Process Engineering, vol. 55, 2023, Art. no. 104216.

 

[21] A. Kilic, M. Emin Karatas, L. Beyazsakal, and V. Okumus, “Preparation and spectral studies of boronate ester modified magnetite iron nanoparticles (Fe3O4@APTES-B) as a new type of biological agents,” Journal of Molecular Liquids, vol. 361, 2022, Art. no. 119602.

 

[22] G. Zanchettin, G. da S. Falk, S. Y. G. González, and D. Hotza, “High performance magnetically recoverable Fe3O4 nanocatalysts: Fast microwave synthesis and photo-fenton catalysis under visible-light,” Chemical Engineering and Processing - Process Intensification, vol. 166, 2021, Art. no. 108438.

 

[23] A. R. P. Hidayat, L. L. Zulfa, N. Faaizatunnisa, D. Prasetyoko, D. Hartanto, N. Widiastuti, A. S. Purnomo, M. Jannah, E. N. Kusumawati, H. Bahruji, and R. Ediati, “Properties and performance of Ni(II) doped magnetic Fe3O4@ mesoporous SiO2/UiO-66 synthesized by an ultrasound assisted method for potential adsorbent of methyl orange: Kinetic, isotherm and thermodynamic studies,” Nano-Structures & Nano-Objects, vol. 37, 2024, Art. no. 101077.

 

[24] R. Yang, B. Liang, D. Han, Z. Guo, C. Yang, J. Yang, Y. Qiu, Q. Li, S. Guo, J. Shi, X. Zhou, T. Qiang, and T. Guo, “Synthesis and antibacterial activity of magnetic Fe3O4-loaded silver nanocomposites,” Journal of Alloys and Compounds, vol. 973, 2024, Art. no. 172849.

 

[25] G. Antarnusa, A. Esmawan, P. Dwi Jayanti, S. Rizki Fitriani, A. Suherman, E. Kinarya Palupi, R. Umam, and Ardimas, “Synthesis of Fe3O4 at different reaction temperatures and investigation of its magnetic properties on giant magnetoresistance (GMR) sensors for bio-detection applications,” Journal of Magnetism and Magnetic Materials, vol. 563, 2022, Art. no. 169903.

 

[26] M. Sajid, S. Shuja, H. Rong, and J. Zhang, “Size-controlled synthesis of Fe3O4 and Fe3O4@ SiO2 nanoparticles and their superparamagnetic properties tailoring,” Progress in Natural Science: Materials International, vol. 33, no. 1, 2023, Art. no. 116.

 

[27] A. Khalid, R. M. Ahmed, M. Taha, and T. S. Soliman, “Fe3O4 nanoparticles and Fe3O4 @SiO2 core-shell: Synthesize, structural, morphological, linear, and nonlinear optical properties,” Journal of Alloys and Compounds, vol. 947, 2023, Art. no. 169639.

 

[28] M. Periyasamy, S. Sain, U. Sengupta, M. Mandal, S. Mukhopadhyay, and A. Kar, “Bandgap tuning of photo Fenton-like Fe3O4/C catalyst through oxygen vacancies for advanced visible light photocatalysis,” Materials Advances, vol. 2, no. 14, 2021, Art. no. 4843.

 

[29] S. Sharma, Tirath, S. Pandey, S. Azizov, and D. Kumar, “Chapter 8 - Microwave-assisted organic synthesis using nanoparticles,” in Advances in Green and Sustainable Chemistry, S. Bhunia, B. Kumar, P. Singh, R. Oraon, and K.-H. B. T.-N. in G. O. S. Kim, Eds. Amsterdam, Netherlands: Elsevier, 2023. Art. no. 241.

 

[30] C. Luo, S. Liu, G. Yang, P. Jiang, X. Luo, Y. Chen, M. Xu, E. Lester, and T. Wu, “Microwave-accelerated hydrolysis for hydrogen production over a cobalt-loaded multi-walled carbon nanotube-magnetite composite catalyst,” Applied Energy, vol. 333, 2023, Art. no. 120538.

 

[31] S. Harnsoongnoen, “Microwave sensors based on coplanar waveguide loaded with split ring resonators: A review,” Applied Science and Engineering Progress, vol. 12, no. 4, pp. 224– 234, 2019, doi: 10.14416/j.ijast.2018.11.006.

 

[32] A. Manikandan, J. J. Vijaya, J. A. Mary, L. J. Kennedy, and A. Dinesh, “Structural, optical and magnetic properties of Fe3O4 nanoparticles prepared by a facile microwave combustion method,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 4, 2014, Art. no. 2077.

 

[33] R. Jain, “Effect of gadolinium doping on the Structural, magnetic, Electrical, Optical, and elastic properties of magnetite nanoparticles,” Materials Science and Engineering: B, vol. 296, 2023, Art. no. 116631.

 

[34] S. Horikoshi, H. Tanizawa, A. Sawai, and N. Serpone, “Low-temperature microwave-driven thermochemical generation of hydrogen from steam reforming of alcohols over magnetite,” International Journal of Hydrogen Energy, vol. 47, no. 56, 2022, Art. no. 23520.

 

[35] S. S. Alterary and A. Alkhamees, “Synthesis, surface modification, and characterization of Fe3O4 @SiO2 coreshell nanostructure,” Green Processing and Synthesis, vol. 10, 2021, Art. no. 384.

 

[36] Yusmaniar, Erdawati, H. Sosiati, S. Budi, M. Alaydrus, and E. Handoko, “Microwave absorbing characteristics of Fe3O4 @ SiO2 core – shell polyaniline-based composites,” Materials Research Express, vol. 8, no. 4, 2021, Art. no. 46101.

 

[37] I. Gabelica, L. Ćurković, V. Mandić, I. Panžić, D. Ljubas, and K. Zadro, “Rapid microwave-assisted synthesis of Fe3O4/SiO2/TiO2 core- 2-layer-shell nanocomposite for photocatalytic degradation of ciprofloxacin,” Catalysts, vol. 11, no. 10, 2021, Art. no. 1136.

 

[38] A. Hamisu and U. I. Gaya, “Bi-Template assisted sol-gel synthesis of photocatalytically-active mesoporous anatase,” Applied Science and Engineering Progress, vol. 14, no. 3, pp. 313– 327, 2021, doi: 10.14416/j.asep.2021.04.003.

 

[39] A. Karimova, S. Hajizada, H. Shirinova, S. Nuriyeva, and L. Gahramanli, “Surface modification strategies for chrysin-loaded iron oxide nanoparticles to boost their anti-tumor efficacy in human colon carcinoma cells,” Journal of Functional Biomaterials, vol. 15, no. 2, 2024, Art. no. 43.

 

[40] F. Ahmad, M. M. Salem-bekhit, F. Khan, S. Alshehri, and A. Khan, “Unique properties of surface-functionalized nanoparticles for bio-application: Functionalization mechanisms and importance in application,” Nanomaterials, vol. 12, no. 8, 2022, Art. no. 1333.

 

[41] D. Ghanbari, “Green synthesis of C@Fe3O4@Ag nanocomposites: Coating of silver nanoparticles on the carbon template / magnetite as a catalyst for conversion of toxic carbon monoxide to carbon dioxide,” Journal of Nanostructures, vol. 11, no. 3, 2021, Art. no. 297.

 

[42] A. Chen, Q. Wang, M. Li, Z. Peng, J. Lai, J. Zhang, J. Xu, H. Huang, and C. Lei, “Combined approach of compression molding and magnetic attraction to micropatterning of magnetic polydimethylsiloxane composite surfaces with excellent anti-icing/deicing performance,” ACS Applied Materials & Interfaces, vol. 13, no. 40, 2021, Art. no. 48153.

 

[43] D. Jiang, Y. Chen, K. Xie, S. Li, and Y. Wang, “Carbon-coated Fe3O4@cotton fiber biomass carbon for the oxygen reduction reaction in air cathode microbial fuel cells,” Journal of Alloys and Compounds, vol. 982, 2024, Art. no. 173843.

 

[44] S. Ajmal, A. Kumar, G. Yasin, M. M. Alam, M. Selvaraj, M. Tabish, M. A. Mushtaq, R. K. Gupta, and W. Zhao, “A microwave-assisted decoration of carbon nanotubes with Fe3O4 nanoparticles for efficient electrocatalytic oxygen reduction reaction,” Journal of Alloys and Compounds, vol. 943, 2023, Art. no. 169067.

 

[45] A. Diego-lopez, O. Cabezuelo, A. Vidal-moya, M. L. Marin, and F. Bosca, “Synthesis and mechanistic insights of SiO2@WO3@Fe3O4 as a novel supported photocatalyst for wastewater remediation under visible light,” Applied Materials Today, vol. 33, no. July, 2023, Art. no. 101879.

 

[46] F. Sadegh, W. Wongniramaikul, and R. Apiratikul, “Environmental technology & innovation magnetically recyclable Fe3O4–CuS@SiO2 catalyst for synergistic adsorption and photodegradation of methyl orange in wastewater under visible light,” Environmental Technology & Innovation, vol. 33, 2024, Art. no. 103545.

 

[47] P. L. Hariani, S. Salni, M. Said, and R. Farahdiba, “Core-shell Fe3O4/SiO2/TiO2 magnetic modified ag for the photocatalytic degradation of congo red dye and antibacterial activity,” Bulletin of Chemical Reaction Engineering & Catalysis, vol. 18, no. 2, 2023, Art. no. 315.

 

[48] S. Wardhani, H. A. Mardiansyah, and D. Purwonugroho, “Fe3O4-SiO2-Alginate photocatalyst for textile dyes waste degradation,” Science and Technology Indonesia, vol. 8, no. 1, pp. 108–115, 2023.

 

[49] S. Kamari and A. Shahbazi, “Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES–nanofiltration membrane matrix for salts, heavy metal ion and dye removal: Long–term operation and reusability tests,” Chemosphere, vol. 243, 2020, Art. no. 125282.

 

[50] H. Li, H. Jin, R. Li, J. Hua, Z. Zhang, and R. Li, “Magnetic Fe3O4@SiO2 study on adsorption of methyl orange on nanoparticles,” Scientific Reports, vol. 14, 2024, Art. no. 1217.

 

[51] U. Holzwarth and N. Gibson, “The scherrer equation versus the ‘Debye-Scherrer equation,’” Nature Nanotechnology, vol. 6, no. 9, 2011, Art. no. 534.

 

[52] C. Xue, Q. Zhang, J. Li, X. Chou, W. Zhang, H. Ye, Z. Cui, and P. J. Dobson, “High photocatalytic activity of Fe3O4-SiO2-TiO2 functional particles with core-shell structure,” Journal of Nanomaterials, vol. 2013, 2013, Art. no 762423.

 

[53] J. H. Cha, H.-H. Choi, Y.-G. Jung, S.-C. Choi, and G. S. An, “Novel synthesis of core–shell structured Fe3O4@SiO2 nanoparticles via sodium silicate,” Ceramics International, vol. 46, no. 10, 2020, Art. no. 14384.

 

[54] J. Mohapatra, A. Mitra, H. Tyagi, D. Bahadur, and M. Aslam, “Iron oxide nanorods as high- performance magnetic resonance imaging contrast agents,” Nanoscale, vol. 7, 2015, Art. no. 9174.

 

[55] R. Ellerbrock, M. Stein, and J. Schaller, “Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR,” Scientific Reports, vol. 12, no. 1, 2022, Art. no. 11708.

 

[56] V. I. Simagina, O. V Komova, G. V Odegova, and O. V Netskina, “Study of copper – Iron mixed oxide with cubic spinel structure, synthesized by the combustion method,” Russian Journal of Applied Chemistry, vol. 92, no. 1, 2019, Art. no. 20.

 

[57] Q. Li, C. W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, and K. Okuyama, “Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles,” Scientific Reports, vol. 7, no. 1, 2017, Art. no. 1.

 

[58] D. Caruntu, G. Caruntu, Y. Chen, C. J. O’Connor, G. Goloverda, and V. L. Kolesnichenko, “Synthesis of variable-sized nanocrystals of Fe3O4 with high surface reactivity,” Chemistry of Materials, vol. 16, no. 25, 2004, Art. no. 5527.

 

[59] Y. X. Zhang, X. Y. Yu, Z. Jin, Y. Jia, W. H. Xu, T. Luo, B. J. Zhu, J. H. Liu, and X. J. Huang, “Ultra high adsorption capacity of fried egg jellyfish-likeγAlOOH(Boehmite)@SiO2/Fe3O4 porous magnetic microspheres for aqueous Pb(II) removal,” Journal of Materials Chemistry, vol. 21, no. 41, 2011. Art. no. 16550.

 

[60] P. R. Jubu, F. K. Yam, V. M. Igba, and K. P. Beh, “Tauc-plot scale and extrapolation effect on bandgap estimation from UV–vis–NIR data – A case study of β-Ga2O3,” Journal of Solid State Chemistry, vol. 290, 2020, Art. no. 121576.

 

[61] S. Anjum, R. Tufail, K. Rashid, R. Zia, and S. Riaz, “Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles,” Journal of Magnetism and Magnetic Materials, vol. 432, 2017, Art. no. 198.

 

[62] A. Nikmah, A. Taufiq, and A. Hidayat, “Synthesis and Characterization of Fe3O4/SiO2 nanocomposites,” IOP Conference Series: Earth and Environmental Science, vol. 276, no. 1, 2019, Art. no. 12046.

Full Text: PDF

DOI: 10.14416/j.asep.2024.06.010

Refbacks

  • There are currently no refbacks.