Page Header

Bio-Jet Fuel from Vegetable Oils: Production Process and Perspective on Modeling and Simulation

Lida Simasatitkul, Suksun Amornraksa, Keerthi Katam, Suttichai Assabumrungrat

Abstract


Bio-jet fuel plays a vital role in mitigating greenhouse gas emissions and reducing the environmental impacts in the air transportation sector. Several production pathways to produce bio-jet fuel have been successfully developed and certified. They can use a variety of materials ranging from edible crops and lignocellulosic biomass to algal oils as feedstock. Various conversion processes can also be used, either thermochemical or biochemical, with and without catalysts. However, among many available processes, producing bio-jet fuel through the hydroprocessed esters and fatty acids (HEFA) route is the most popular. It is also the only route that has so far been commercialized. This review gives an insight into the bio-jet fuel production from vegetable oils, which are the source of HEFA feedstock, with an emphasis on process design and simulation. The use of food and non-food resources as feedstock and the overview of the certified processes for bio-jet fuel production are reviewed and discussed. Additionally, the production process of bio-jet fuel produced from vegetable oils is explored. Finally, the key challenges and prospects of the process simulation and modeling of bio-jet fuel production from vegetable oils are addressed.

Keywords



[1] A United Nations Specialized Agency, “Air traffic recovery is fast – approaching pre-pandemic level,” 2021. [Online]. Available: https://www. icao.int/Newsroom/Pages/Air-traffic-recovery-is-fastapproaching-prepandemic-levels.aspx

 

[2] U.S. Department of Energy, “Sustainable aviation fuel: Review of technical pathways report,” 2020. [Online]. Available: https://www.energy. gov/sites/default/files/2020/09/f78/beto-sust-aviation-fuel-sep-2020.pdf

 

[3] A. W. Schäfer, A. D. Evans, T. G. Reynolds, and L. Dray, “Costs of mitigating CO2 emissions from passenger aircraft,” Nature Climate Change, vol. 6, no. 4, pp. 412–417, 2016, doi: 10.1038/nclimate2865.

 

[4] J. I. Hileman, D. S. Ortiz, J. T. Bartis, H. M. Wong, P. E. Donohoo, M. A. Weiss, and I. A. Waitz, “Near-Term Feasibility of Alternative Jet Fuels,” 2009. [Online]. Available: https://www. rand.org/pubs/technical_reports/TR554.html

 

[5] J. Yang, Z. Xin, Q. (Sophia) He, K. Corscadden, and H. Niu, “An overview on performance characteristics of bio-jet fuels,” Fuel, vol. 237, pp. 916–936, Feb. 2019, doi: 10.1016/j.fuel. 2018.10.079.

 

[6] T. Nunlist, “Flying High: China’s Aviation Industry is Becoming a Global Force,” 2024. [Online]. Available: https://english.ckgsb.edu.cn/ knowledge/article/flying-high-chinas-aviation-industry-is-becoming-a-global-force/

 

[7] R. Jiménez, “RefuelEU aviation initiative: Council adopts new law to decarbonise the aviation sector – Consilium,” 2024. [Online]. Available: https://www.consilium.europa.eu/en/press/press-releases/2023/10/09/refueleu-aviation-initiative-council-adopts-new-law-to-decarbonise-the-aviation-sector/

 

[8] D. S. Lee, D. W. Fahey, P. M. Forster, P. J. Newton, R. C. N. Wit, L. L. Lim, B. Owen, and R. Sausen, “Aviation and global climate change in the 21st century,” Atmospheric Environment, vol. 43, no. 22–23, pp. 3520–3537, Jul. 2009, doi: 10.1016/j.atmosenv.2009.04.024.

 

[9] U.S. Energy Information Administration, “Monthly Energy Review 2017,” 2017. [Online]. Available: http://www.eia.gov/totalenergy/data/ monthly/#consumption.

 

[10] J. I. Hileman and R. W. Stratton, “Alternative jet fuel feasibility,” Transport Policy, vol. 34, pp. 52–62, Jul. 2014, doi: 10.1016/j.tranpol. 2014.02.018.

 

[11] K. Atsonios, M. A. Kougioumtzis, K. D. Panopoulos, and E. Kakaras, “Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison,” Applied Energy, vol. 138, pp. 346–366, Jan. 2015, doi: 10.1016/j.apenergy. 2014.10.056.

 

[12] I. H. Choi, K. R. Hwang, J. S. Han, K. H. Lee, J. S. Yun, and J. S. Lee, “The direct production of jet-fuel from non-edible oil in a single-step process,” Fuel, vol. 158, pp. 98–104, Oct. 2015, doi: 10.1016/j.fuel.2015.05.020.

 

[13] ASTM International, “ASTM D975-12a standard specification for diesel fuel oils,” 2013. [Online]. Available: https://www.astm.org/d0975-23a.html

 

[14] U.S. Department of Defense, “Detail specification: turbine fuel, aviation, kerosene type, JP-8 (NATO F-34), NATO F-35, and JP-8þ100 (NATO F-37),” 2011. [Online]. Available: https://publishers. standardstech.com/stgnet

 

[15] L. H. Duong, I. K. Reksowardojo, T. H. Soerawidjaja, O. Fujita, G. F. Neonufa, T. T.G. Nguyen, and T. Prakoso, “Soap-derived biokerosene as an aviation alternative fuel: Production, composition, and properties of various blends with jet fuel,” Chemical Engineering and Processing - Process Intensification, vol. 153, Jul. 2020, Art. no. 107980, doi: 10.1016/j.cep.2020.107980.

 

[16] C. H. Lin, Y. K. Chen, and W. C. Wang, “The production of bio-jet fuel from palm oil derived alkanes,” Fuel, vol. 260, Jan. 2020, Art. no. 116345, doi: 10.1016/j.fuel.2019.116345.

 

[17] H. Liu, C. Zhang, H. Tian, L. Li, X. Wang, and T. Qiu, “Environmental and techno-economic analyses of bio-jet fuel produced from jatropha and castor oilseeds in China,” International Journal of Life Cycle Assessment, vol. 26, pp. 1071– 1084, 2021, doi: 10.1007/s11367-021-01914-0.

 

[18] N. Vela-García, D. Bolonio, M. J. García-Martínez, M. F. Ortega, D. A. Streitwieser, and L. Canoira, “Biojet fuel production from oleaginous crop residues: Thermoeconomic, life cycle and flight performance analysis,” Energy Conversion and Management, vol. 244, 2021, Art. no. 114534, doi: 10.1016/j.enconman.2021.114534.

 

[19] U. Wangrakdiskul and N. Yodpijit, “Trends analysis and future of sustainable palm oil in Thailand,” Applied Science and Engineering Congress, Vol.8, No.1, pp. 21-32, 2015.

 

[20] P. Muanruksa, J. Winterburn, and P. Kaewkannetra, “Biojet fuel production from waste of palm oil mill effluent through enzymatic hydrolysis and decarboxylation,” Catalysts, vol. 11, no. 1, 2021, Art. no. 78, doi: 10.3390/catal11010078.

 

[21] N. Sarkar, S. K. Ghosh, S. Bannerjee, and K. Aikat, “Bioethanol production from agricultural wastes: An overview,” Renewable Energy, vol. 37, no. 1, pp. 19–27, Jan. 2012, doi: 10.1016/j.renene. 2011.06.045.

 

[22] A. Gupta and J. P. Verma, “Sustainable bio-ethanol production from agro-residues: A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 550–567, Jan. 2015, doi: 10.1016/ j.rser.2014.08.032.

 

[23] T. L. T. Nguyen, J. E. Hermansen, and L. Mogensen, “Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark,” Applied Energy, vol. 104, pp. 663–641, 2013, doi: 10.1016/j.apenergy.2012.11.057.

 

[24] C. S. K. Lin, L. A. Pfaltzgraff, L. Herrero-Davila, E. B. Mubofu, S. Abderrahim, J. H. Clark, A. A. Koutinas, N. Kopsahelis, K. Stamatelatou, F. Dickson, S. Thankappan, Z. Mohamed, R. Brocklesby, and R. Luque, “Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective,” Energy and Environmental Science, vol. 6, no. 2, pp. 426–464, 2013, doi: 10.1039/ c2ee23440h.

 

[25] B. K. Adhikari, S. Barrington, and J. Martinez, “Predicted growth of world urban food waste and methane production,” Waste Management and Research, vol. 24, no. 5, pp. 421–433, 2006, doi: 10.1177/0734242X06067767.

 

[26] S. Kirdponpattara, S. Chuetor, M. Sriariyanun, and M. Phisalaphong, “Bioethanol production by Pichia stipitis Immobilized on water hyacinth and thin-shell silk cocoon,” Applied Science and Engineering Progress, vol. 15, no. 3, 2022, Art. no. 4662.

 

[27] S. R. Couto and M. Á. Sanromán, “Application of solid-state fermentation to food industry-A review,” Journal of Food Engineering, vol. 76, no. 3, pp. 291–302, 2006, doi: 10.1016/j.jfoodeng. 2005.05.022.

 

[28] L. A. Sargeant, M. Mardell, K. M. Saad-Allah, A. H. Hussein, F. Whiffin, F. Santomauro, and C. J. Chuck, “Production of lipid from depolymerised lignocellulose using the biocontrol yeast, rhodotorula minuta: The fatty acid profile remains stable irrespective of environmental conditions,” European Journal of Lipid Science and Technology, vol. 118, no. 5, pp. 777–787, 2016, doi: 10.1002/ejlt.201500143.

 

[29] D. P. Ho, H. H. Ngo, and W. Guo, “A mini review on renewable sources for biofuel,” Bioresource Technology, vol. 169, pp. 742–749, 2014, doi:10.1016/j.biortech.2014.07.022.

 

[30] I. Lewandowski, J. M. O. Scurlock, E. Lindvall, and M. Christou, “The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe,” Biomass Bioenergy, vol. 25, no. 4, pp. 335–361, 2003, doi: 10.1016/ S0961-9534(03)00030-8.

 

[31] C. Sorensen, “Petroleum-Based Jet Fuel Production & SAF” 2024. [Online]. Available: https:// lee-enterprises.com/petroleum-based-jet-fuel-production-saf/

 

[32] K. J. Vicari, S. S. Tallam, T. Shatova, K. K. Joo, C. J. Scarlata, D. Humbird, E. J. Wolfrum, and G. T. Beckham, “Uncertainty in techno-economic estimates of cellulosic ethanol production due to experimental measurement uncertainty,” Biotechnol Biofuels, vol. 5, 2012, Art. no. 23, doi: 10.1186/1754-6834-5-23.

 

[33] M. Y. Koh and T. I. Tinia, “A review of biodiesel production from Jatropha curcas L. oil,” Renewable and Sustainable Energy Reviews, vol. 15, no. 5, pp. 2240–2251, 2011, doi: 10.1016/ j.rser.2011.02.013.

 

[34] D. R. Shonnard, L. Williams, and T. N. Kalnes, “Camelina-derived jet fuel and diesel: Sustainable advanced biofuels,” Environmental Progress &Sustainable Energy, vol. 29, no. 3, pp. 382–392, 2010, doi: 10.1002/ep.10461.

 

[35] Z. Yaakob, M. Mohammad, M. Alherbawi, Z. Alam, and K. Sopian, “Overview of the production of biodiesel from Waste cooking oil,” Renewable and Sustainable Energy Reviews, vol. 18. pp. 184–193, 2013, doi: 10.1016/j.rser.2012.10.016.

 

[36] M. G. Kulkarni and A. K. Dalai, “Waste cooking oil - An economical source for biodiesel: A review,” Industrial and Engineering Chemistry Research, vol. 45, no. 9. pp. 2901–2913, 2006, doi: 10.1021/ie0510526.

 

[37] L. Brennan and P. Owende, “Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 2, pp. 557–577, 2010, doi: 10.1016/j.rser.2009.10.009.

 

[38] L. A. Ribeiro and P. P. Da Silva, “Surveying techno-economic indicators of microalgae biofuel technologies,” Renewable and Sustainable Energy Reviews, vol. 25, pp. 89–96, 2013. doi: 10.1016/j.rser.2013.03.032.

 

[39] C. J. Chuck, J. L. Wagner, and R. W. Jenkins, “Biofuels from Microalgae,” in Chemical Processes for a Sustainable Future, T. Letcher, J. Scott, and D. Patterson, Eds. The Royal Society of Chemistry, London, UK, pp. 425–442, 2014, doi: 10.1039/BK9781849739757-00423.

 

[40] T. Wuttilerts, S. Chulalaksananukul, P. Peerapongpipat, and P. Suksommanat, “Evaluation of biodiesel production using oil feedstock from contaminated macro algae in shrimp farming,” Applied Science and Engineering Progress, vol. 12, no. 3, pp. 179– 185, 2019, doi: 10.14416/j.ijast.2018.11.005.

 

[41] R. Davis, A. Aden, and P. T. Pienkos, “Techno-economic analysis of autotrophic microalgae for fuel production,” Applied Energy, vol. 88, no. 10, pp. 3524–3531, 2011.

doi: 10.1016/j.apenergy.2011.04.018.

 

[42] H. Wei, W. Liu, X. Chen, Q. Yang, J. Li, and H. Chen, “Renewable bio-jet fuel production for aviation: A review,” Fuel, vol. 254. 2019, Art. no. 115599, doi: 10.1016/j.fuel.2019.06.007.

 

[43] ICAO, “Conversion processes,” 2024. [Online]. Available: https://www.icao.int/environmental-protection/GFAAF/Pages/Conversion-processes. aspx

 

[44] K. R. Weiss, “Advancing ‘Alcohol To Jet’ To Full Replacement Fuel (ATJ-SKA),” 2020. [Online]. Available: https://www.icao.int/Meetings/ Stocktaking2020/Documents/ICAO Stocktaking %202020 - 3.3.7 - Kevin Weiss.pdf

 

[45] Swedish Biofuels AB, “Swedish Biofuels AB,” 2024. [Online]. Available: https://swedishbiofuels. se/projects/biological-fully-synthetic-jet

 

[46] CAAFI, “Fuel Qualification,” 2024. [Online]. Available: https://www.caafi.org/focus_areas/ fuel_qualification.html

 

[47] A. de Klerk “Aviation turbine fuels through the fischertropsch process,” in Biofuels for Aviation Feedstocks, Technology and Implementation. Massachusetts: Academic Press, pp. 241–259, 2016.

 

[48] P. Maki-Arvela, M. Martinez-Klimov, D. Murzin, “Hydroconversion of fatty acids and vegetable ois for production of jet fuels,” Fuel, vol. 306, 2021, Art. no. 121673.

 

[49] K. Ng, D. Faroog, A. Yang, “Global biorenewable development strategies for sustainable aviation fuel production” Renewable and Sustainable Energy Reviews, vol. 105, 2021, Art. no. 111502.

 

[50] P. R. Robinson and G. E. Dolbear, “Hydrotreating and hydrocracking: Fundamentals” in Practice Advance in Petroleum Processing. New York: Springer, pp. 177–218, 2006, doi: 10.1007/978- 0-387-25789-1_7.

 

[51] H. Kittel, J. Horský, and P. Šimáček, “Properties of selected alternative petroleum fractions and sustainable aviation fuels” Process, vol. 11, 2023, Art. no. 935, doi: 10.3390/pr11030935.

 

[52] C. Gutiérrez-Antonio, F. Israel Gómez-Castro, J. G. Segovia-Hernández, and A. Briones-Ramírez, “Simulation and optimization of a biojet fuel production process,” Computer Aided Chemical Engineering, vol. 32, pp. 13–18, 2013, doi: 10.1016/B978-0-444-63234-0.50003-8.

 

[53] Ł. Jȩczmionek and K. Porzycka-Semczuk, “Hydrodeoxygenation, decarboxylation and decarbonylation reactions while co-processing vegetable oils over a NiMo hydrotreatment catalyst. Part I: Thermal effects - Theoretical considerations,” Fuel, vol. 131, pp. 1–5, 2014, doi: 10.1016/j.fuel.2014.04.055.

 

[54] A. Galadima and O. Muraza, “Catalytic upgrading of vegetable oils into jet fuels range hydrocarbons using heterogeneous catalysts: A review,” Journal of Industrial and Engineering Chemistry, vol. 29, pp. 12–23, 2015, doi: 10.1016/ j.jiec.2015.03.030.

 

[55] V. Itthibenchapong, A. Srifa, R. Kaewmeesri, P. Kidkhunthod, and K. Faungnawakij, “Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS2/γ-Al2O3 catalysts,” Energy Conversion and Management, vol. 134, pp. 188–196, 2017, doi: 10.1016/j.enconman. 2016.12.034.

 

[56] A. Sonthalia and N. Kumar, “Hydroprocessed vegetable oil as a fuel for transportation sector: A review,” Journal of the Energy Institute, vol. 92, no. 1, pp. 1–17, 2019, doi: 10.1016/ j.joei.2017.10.008.

 

[57] I-H. Choi, J-S Lee, C-U. Kim, T-W. Kim, K-Y Lee, and K-R. Hwang, “Production of bio-jet fuel range alkanes from catalytic deoxygenation of Jatropha fatty acids on a WOx/Pt/TiO2 catalyst,” Fuel, vol. 215, pp. 675–685, 2018, doi: 10.1016/ j.fuel.2017.11.094.

 

[58] M. Alherbawi, G. McKay, H. R. Mackey, and T. Al-Ansari, “Jatropha curcas for jet biofuel production: Current status and future prospects,” Renewable and Sustainable Energy Reviews, vol. 135, 2021, Art. no. 110396. doi: 10.1016/ j.rser.2020.110396.

 

[59] M. C. Vásquez, E. E. Silva, and E. F. Castillo, “Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production,” Biomass and Bioenergy, vol. 105, pp. 197–206, 2017, doi: 10.1016/ j.biombioe.2017.07.008.

 

[60] T. Morgan, D. Grubb, E. Santillan-Jimenez, and M. Crocker, “Conversion of triglycerides to hydrocarbons over supported metal catalysts,” Topic in Catalysis, vol. 53, no. 11–12, pp. 820– 829, 2010, doi: 10.1007/s11244-010-9456-1.

 

[61] Zhang Ze, Cheng J, Zhu Y, Guo H, and Yang W. “Jet fuel range hydrocarbons production through competitive pathways of hydrocracking and isomerization over HPW-Ni/MCM-41 catalyst,” Fuel, vol.269, 2020, Art. no. 117465, doi: 10.1016/j.fuel.2020.117465.

 

[62] S. Khan, A. N. Kay Lup, K. M. Qureshi, F. Abnisa, W. M. A. Wan Daud, and M. F. A. Patah, “A review on deoxygenation of triglycerides for jet fuel range hydrocarbons,” Journal of Analytical and Applied Pyrolysis, vol. 140, pp. 1–24, 2019, doi: 10.1016/j.jaap.2019.03.005.

 

[63] C. A. Scaldaferri and V. M. D. Pasa, “Hydrogen-free process to convert lipids into bio-jet fuel and green diesel over niobium phosphate catalyst in one-step,” Chemical Engineering Journal, vol. 370, pp. 98–109, 2019, doi: 10.1016/j. cej.2019.03.063.

 

[64] L. M. de Souza, P. A. S. Mendes, and D. A. G. Aranda, “Oleaginous feedstocks for hydro-processed esters and fatty acids (HEFA) biojet production in southeastern Brazil: A multi-criteria decision analysis,” Renewable Energy, vol. 149, pp. 1339–1351, 2020, doi: 10.1016/j. renene.2019.10.125.

 

[65] C. J. Chuck, Biofuels for Aviation Feedstocks, Technology and Implementation. Massachusetts: Academic Press, vol. 1, pp. 855–856, 2016.

 

[66] C. Gutiérrez-Antonio, F. I. Gómez-Castro, A. G. Romero-Izquierdo, and S. Hernández, “Energy integration of a hydrotreating process for the production of biojet fuel,” Computer Aided Chemical Engineering, vol. 38, pp. 127–132, 2016, doi: 10.1016/B978-0-444-63428-3.50026-6.

 

[67] M. Makcharoen, A. Kaewchada, N. Akkarawatkhoosith, and A. Jaree, “Biojet fuel production via deoxygenation of crude palm kernel oil using Pt/C as catalyst in a continuous fixed bed reactor,” Energy Conversion and Management: X, vol. 12, 2021, Art. no. 100125, doi: 10.1016/j.ecmx.2021.100125.

 

[68] D. Chehadeh, X. Ma, and H. Al Bazzaz, “Recent progress in hydrotreating kinetics and modeling of heavy oil and residue: A review,” Fuel, vol. 334, 2023, Art. no. 126404, doi: 10.1016/ j.fuel.2022.126404.

 

[69] L. Attanatho, “Performances and kinetic studies of hydrotreating of bio-oils in microreactor,” 2012. [Online]. Available: https://ir.library. oregonstate.edu/concern/graduate_thesis_or_ dissertations/gx41mp382?locale=en

 

[70] Y. Muharam, O. A. Nugraha, and D. Leonardi, “Modelling of a hydrotreating reactor to produce renewable diesel from non-edible vegetable oils,” Chemical Engineering Transaction, vol. 56, pp. 1561–1566, 2017, doi: 10.3303/CET1756261.

 

[71] A. R. K. Gollakota, M. D. Subramanyam, N. Kishore, and S. Gu, “CFD simulations on the effect of catalysts on the hydrodeoxygenation of bio-oil,” RSC Advances, vol. 5, no. 52, pp. 41855–41866, 2015, doi: 10.1039/c5ra02626a.

 

[72] M. D. Subramanyam, A. R. K. Gollakota, and N. Kishore, “CFD simulations of catalytic hydrodeoxygenation of bio-oil using Pt/Al2O3 in a fixed bed reactor,” RSC Advances, vol. 5, no. 110, pp. 90354–90366, 2015, doi: 10.1039/ c5ra14985a.

 

[73] A. Tirado, F. Trejo, and J. Ancheyta, “Simulation of bench-scale hydrotreating of vegetable oil reactor under non-isothermal conditions,” Fuel, vol. 275, 2020, Art. no. 117960, doi: 10.1016/ j.fuel.2020.117960.

 

[74] Y. Muharam and R. T. Adevia, “Modelling and simulation of a slurry bubble column reactor for green fuel production via hydrocracking of vegetable oil,” in E3S Web of Conferences, 2018, Art. no. 02032, doi: 10.1051/e3sconf/20186702032.

 

[75] E. Quiroz-Pérez, C. Gutiérrez-Antonio, J. A. de Lira-Flores, and R. Vázquez-Román, “A thermal-hydrodynamic model to evaluate the potential of different tray designs for production of renewable aviation fuel through reactive distillation,” Chemical Engineering and Processing - Process Intensification, vol. 166, 2021, Art. no. 108482, doi: 10.1016/j.cep.2021.108482.

 

[76] N. Phichitsurathaworn, L. Simasatitkul, S. Amornraksa, A. Anantpinijwatna, P. Charoensuppanimit, and S. Assabumrungrat, “Techno-economic analysis of co-production of bio-hydrogenated diesel from palm oil and methanol,” Energy Conversion and Management, vol. 244, 2021, Art. no. 114464, doi: 10.1016/j.enconman.2021.114464.

 

[77] P. L. Chu, C. Vanderghem, H. L. MacLean, and B. A. Saville, “Process modeling of hydrodeoxygenation to produce renewable jet fuel and other hydrocarbon fuels,” Fuel, vol. 196, pp. 298–305, 2017, doi: 10.1016/ j.fuel.2017.01.097.

 

[78] E. Barbera, R. Naurzaliyev, A. Asiedu, A. Bertucco, E. P. Resurreccion, and S. Kumar, “Techno-economic analysis and life-cycle assessment of jet fuels production from waste cooking oil via in situ catalytic transfer hydrogenation,” Renewable Energy, vol. 160, pp. 428–449, 2020, doi: 10.1016/j.renene. 2020.06.077.

 

[79] A. Gómez-De la Cruz, A. G. Romero-Izquierdo, C. Gutiérrez-Antonio, F. I. Gómez-Castro, and S. Hernández, “Modelling of the hydrotreating process to produce renewable aviation fuel from micro-algae oil,” Computer Aided Chemical Engineering, vol. 40, pp. 655–660, 2017, doi: 10.1016/B978-0-444-63965-3.50111-2.

 

[80] UOP, “UOP Ecofining™ process for sustainable aviation fuel,” USA, 2021. [Online]. Available: https://uop.honeywell.com/

 

[81] E. Martinez-Hernandez, L. F. Ramírez-Verduzco, M. A. Amezcua-Allieri, and J. Aburto, “Process simulation and techno-economic analysis of bio-jet fuel and green diesel production — Minimum selling prices,” Chemical Engineering Research and Design, vol. 146, pp. 60–70, 2019, doi: 10.1016/j.cherd.2019.03.042.

 

[82] I. Z. Ambrosio, B. R. Margarida, and L. F. L. Luz, “Simulation and optimization ff biojet fuel production through single-step route and residual raw material,” Chemical Enginering Transaction, vol. 99, pp. 613–618, 2023, doi: 10.3303/ CET2399103.

 

[83] M. T. Carrasco-Suárez, A. G. Romero-Izquierdo, C. Gutiérrez-Antonio, F. I. Gómez-Castro, and S. Hernández, “Production of renewable aviation fuel by waste cooking oil processing in a biorefinery scheme: Intensification of the purification zone,” Chemical Engineering and Processing - Process Intensification, vol. 181, 2022, Art. no. 109103, doi: 10.1016/j.cep.2022.109103.

 

[84] C. Gutiérrez-Antonio, F. I. Gómez-Castro, S. Hernández, and A. Briones-Ramírez, “Intensification of a hydrotreating process to produce biojet fuel using thermally coupled distillation,” Chemical Engineering and Processing: Process Intensification, vol. 88, pp. 29–36, 2015, doi: 10.1016/j.cep.2014.12.002.

 

[85] M. García-Sánchez, M. Sales-Cruz, T. Lopez- Arenas, T. Viveros-García, and E. S. Pérez- Cisneros, “An intensified reactive separation process for bio-jet diesel production,” Processes, vol. 7, no. 10, 2019, Art. no. 655, doi: 10.3390/ pr7100655.

 

[86] C. Gutiérrez-Antonio, A. G. Romero-Izquierdo, F. I. Gómez-Castro, S. Hernández, and A. Briones-Ramírez, “Simultaneous energy integration and intensification of the hydrotreating process to produce biojet fuel from jatropha curcas,” Chemical Engineering and Processing: Process Intensification, vol. 110, pp. 134–145, 2016, doi: 10.1016/j.cep.2016.10.007.

 

[87] C. Gutiérrez-Antonio, M. L. Soria Ornelas, F. I. Gómez-Castro, and S. Hernández, “Intensification of the hydrotreating process to produce renewable aviation fuel through reactive distillation,” Chemical Engineering and Processing: Process Intensification, vol. 124, pp. 122–130, 2018, doi: 10.1016/j.cep.2017.12.009.

 

[88] Z. Béalu, “Process simulation and optimization of alternative liquid fuels production: A techno-economic assessment of the production of HEFA Jet Fuel,” M.S. Thesis, University of Kaiserslautern, Germany, 2017.

 

[89] A. P. M. M. Diniz, R. Sargeant, and G. J. Millar, “Stochastic techno-economic analysis of the production of aviation biofuel from oilseeds,” Biotechnology for Biofuels, vol. 11, no. 1, 2018, Art. no. 161, doi: 10.1186/s13068-018-1158-0.

 

[90] X. Li, E. Mupondwa, and L. Tabil, “Technoeconomic analysis of biojet fuel production from camelina at commercial scale: Case of Canadian Prairies,” Bioresource Technology, vol. 249, pp. 196–205, 2018, doi: 10.1016/j.biortech.2017.09.183.

 

[91] K. M. Zech, S. Dietrich, M. Reichmuth, W. Weindorf, and F. Müller-Langer, “Techno-economic assessment of a renewable bio-jet-fuel production using power-to-gas,” Applied Energy, vol. 231, pp. 997–1006, 2018, doi: 10.1016/ j.apenergy.2018.09.169.

 

[92] L. Tao, A. Milbrandt, Y. Zhang, and W. C. Wang, “Techno-economic and resource analysis of hydroprocessed renewable jet fuel,” Biotechnolology for Biofuels, vol. 10, no. 1, 2017, Art. no. 261, doi: 10.1186/s13068-017-0945-3.

 

[93] Z. Li, M. Jiang, S. Wang, and S. Zhang, “Deep learning methods for molecular representation and property prediction,” Drug Discovery Today, vol. 27, no. 12, 2022, Art. no. 103373, doi: 10.1016/j.drudis.2022.103373.

 

[94] M. Y. Ong, S. Nomanbhay, F. Kusumo, R. M. H. Raja Shahruzzaman, and A. H. Shamsuddin, “Modeling and optimization of microwave-based bio-jet fuel from coconut oil: Investigation of response surface methodology (RSM) and artificial neural network methodology (ANN),” Energies, vol. 14, no. 2, 2021, Art. no. 295, doi: 10.3390/en14020295.

 

[95] W. Song, V. Mahalec, J. Long, M. Yang, and F. Qian, “Modeling the hydrocracking process with deep neural networks,” Industrial & Engineering Chemistry Research, vol. 59, no. 7, pp. 3077–3090, 2020, doi: 10.1021/acs.iecr. 9b06295.

 

[96] M. Mayer, “Predicting properties of bio-jet fuels using machine learning and ATR-FTIR spectroscopy,” M.S. Thesis, Oregon State University, USA, 2021.

 

[97] J. G. Rittig, Q. Gao, M. Dahmen, A. Mitsos, and A. M. Schweidtmann, “Graph neural networks for the prediction of molecular structure-property relationships,” 2023. [Online]. Available: http://arxiv.org/abs/2208.04852

Full Text: PDF

DOI: 10.14416/j.asep.2024.06.013

Refbacks

  • There are currently no refbacks.