Page Header

Phenol Removal through Horseradish Peroxidase Immobilization on Ultrafiltration Membranes: Comparative Analysis of Immobilization Methods and Fouling Patterns

Apinya Onsarn, Karnika Ratanapongleka, Supatpong Mattaraj, Wipada Dechapanya, Tiammanee Rattanaweerapan, Sompop Sanongraj

Abstract


This research investigates the removal of phenol using pure peroxidase from horseradish grade I in conjunction with a dead-end ultrafiltration membrane. Various horseradish peroxidase (HRP) immobilization techniques— physical adsorption, covalent bonding, and cross-linking with glutaraldehyde—were applied to a regenerated cellulose (RC) membrane with a surface area of 44 m2 and a molecular weight cut-off of 30 kDa. The investigation examined factors influencing phenol removal, including phenol concentration, membrane fouling, and the reusability of immobilized enzymes. Results indicated that covalent bonding was the most suitable enzyme immobilization technique, achieving a remarkable 90.1% immobilization yield. Phenol removal efficiency reached 100% at 30 min under specific conditions: phenol concentration of 1 mg/L, pH 6.0, hydrogen peroxide concentration of 0.5 mM, and operating pressure set at 3 psig, with temperature maintained at 28 ± 3 °C. Membrane fouling resulted in a decrease in flux. The performance of fouling models was found to be influenced by phenol concentration, with the Cake Formation Model (CFM) proving most effective at low concentrations, while the Complete Pore Blocking Model (CBM) emerged as more suitable at higher concentrations. The immobilized enzyme exhibited reusability for five cycles, maintaining a phenol removal efficiency exceeding 50%. These findings contribute to understanding the enzymatic phenol removal process and the use of appropriate enzyme immobilization techniques for the effective and sustainable treatment of phenol-contaminated water.

Keywords



Full Text: PDF

DOI: 10.14416/j.asep.2024.07.001

Refbacks

  • There are currently no refbacks.