Page Header

Parameterization on Fructose-Stabilized Silver Nanoparticle Synthesis by Non-thermal Atmospheric Pressure Helium Plasma Jet

Jirapong Sornsakdanuphap, Khuanjarat Choengpanya, Chanthana Susawaengsup, Lueacha Tabtimmai, Kiattawee Choowongkomon

Abstract


The fructose stabilized silver nanoparticles (FRU-AgNPs) synthesis is comparatively studied by defining the experimental parameters such as plasma jet device configuration, AgNO3 concentration, plasma treatment time and fructose stabilizer concentration. In this research, there are four types of plasma jet device configurations (C1–C4). The plasma treatment time is varied in a range of 10 to 30 minutes. Fructose concentration is varied to be 5, 10, 20 and 40 mM. The helium gas is used to generate non-thermal atmospheric-pressure plasma. The plasma jet device is operated by a sinusoidal power supply at a repetition frequency of approximately 1 MHz. The input electrical power for plasma generation is about 30 W. The formation and stability of AgNPs are characterized by surface plasmon resonance (SPR) absorbance peak from ultraviolet-visible (UV-Vis) spectrophotometer. The absorbance peaks of AgNPs are found in the range of 400 to 420 nm. According to the dynamic light scattering (DLS) technique, the hydrodynamic sizes of AgNPs are in the range of 15 to 40 nm. The AgNPs show anti-bacterial activity against Escherichia coli with an average inhibition zone of 8.87 ± 0.55 mm. Based on the highest yield of AgNPs, optimal parameters are found to be C3, plasma treatment time of 30 min, AgNO3 concentration of 1–2 mM and fructose concentration of 40 mM.

Keywords



[1]    P. N. J. Arjun, B. Sankar, K. V. Shankar, N. V. Kulkarni, S. Sivasankaran, and B. Shankar, “Silver and silver nanoparticles for the potential treatment of COVID-19: A review,” Coating, vol. 12, Nov. 2022, Art. no. 1679.  

[2]    S. Khan, M. Zahoor, R. S. Khan, M. Ikram, and N. U. Islam, “The impact of silver nanoparticles on the growth of plants: The agriculture applications,” Heliyon, vol. 9, Jun. 2023, Art. no. e16928.

[3]    P. Palani, H. Trilaksana, R. M. Sujatha, K. Kannan, S. Rajendran, K. Korniejenko, M. Nykiel, and M. Uthayakumar, “Silver nanoparticles for waste water management,” Molecules, vol. 28, Apr. 2023, Art. no. 3520.  

[4]    M. M. Martin and R. E. Sumayao Jr., “Facile green synthesis of silver nanoparticles using Rubus rosifolius Linn aqueous fruit extracts and its characterization,” Applied Science and Engineering Progress, vol. 15, no. 3, Oct. 2021, Art. no. 5511, doi: 10.14416/j.asep.2021.10.011.

[5]    D. Chicea, A. Nicolae-Maranciuc, A. S. Doroshkevic, L. M. Chicea, and O. M. Ozkendir, “Comparative synthesis of silver nanoparticles: Evaluation of chemical reduction procedures, AFM and DLS size analysis,” Materials, vol. 16, Jul. 2023, Art. no. 5244.

[6]    M. Momcilovic, J. Petrovic, M. Nemoda, J. Ciganovic, N. Krstulovic, M. Ognjanovic, and S. Zivkovic, “Laser ablation in water for silver and gold nanoparticle synthesis and their application for improvement of TEA CO2 LIBS setup performance,” Applied Physics B, vol. 129, Mar. 2023, Art. no. 62.

[7]    V. Darakai, C. Punsawad, J. Jitonnom, M. Nisoa, and P. Rattanakit, “Microwave-assisted ultrafine silver nanoparticle synthesis using Mitragyna speciosa for antimalarial applications,” De Gruyter, vol. 13, no. 1, Mar. 2024, Art. no. 20230257.

[8]    T. R. Acharya, M. Jang, G. J. Lee, and E. H. Choi, “A comprehensive study on the synthesis, characteristics, and catalytic applications of submerged hydrogen-mixed argon plasma synthesized silver nanoparticles,” Current Applied Physics, vol. 56, pp. 36–46, Oct. 2023.

[9]    M. H. Al-Janabi, C. Y. Ataol, and A. Ramizy, “Characterization of silver nanoparticles prepared by cold plasma reaction,” Iraqi Journal of Applied Physics, vol. 20, no. 2A, pp. 279–284, Apr. 2024.

[10]  H. K. Tawfeeq, N. K. Abdalameer, R. H. Jassim, and M. M. Shehab, “Silver nanoparticles synthesized by cold plasma as an antibiofilm agent against Staphylococcus epidermis isolated from acne,” Nano Biomedicine and Engineering, vol. 16, pp. 101–109, Mar. 2024.

[11]  M. Shepida, O. Kuntyi, Y. Sukhatskiy, A. Mazur, and M. Sozanskyi, “Microplasma synthesis of antibacterial active silver nanoparticles in sodium polyacrylate solutions,” Bioinorganic Chemistry and Applications, vol. 2021, Oct. 2021, no. 4465363.

[12]  L. Chandana, P. Ghosal, T. Shashidhar, and Ch. Subrahmanyam, “Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticles,” Royal Society of Chemistry Advances, vol. 8, pp. 24827–24835, Jul. 2018.

[13]  J. Weerasinghe, W. Li, R. Zhou, R. Zhou, A. Gissibl, P. Sonar, R. Speight, K. Vasilev and K. K. Ostrikov, “Bactericidal silver nanoparticles by atmospheric pressure solution plasma processing,” Nanomaterials, vol. 10, May 2020, Art. no. 874.

[14]  K. Yambe, T. Izumida, I. Ohyama, and H. Akatsuka, “Comparison of electron densities and temperatures in helium and argon nonthermal atmospheric-pressure plasmas by continuum spectral analysis,” IEEE Transactions on Plasma Science, vol. 52, no. 2, pp. 384–394, Feb. 2024.

[15]  T. N. Tran, C. H. Oh, and W. Lee, “Determination of electron properties of a helium atmospheric pressure plasma jet with a grounded metallic target,” Plasma Processes and Polymers, vol. 18, Dec. 2021, Art. no. e2100092.

[16]  J. Sornsakdanuphap, P. Suanpoot, Y. J. Hong, B. Ghimire, G. Cho, H. S. Uhm, D. Kim, Y. J. Kim, and E. H. Choi, “Electron temperature and density of non-thermal atmospheric pressure argon plasma jet by convective wave packet model,” Journal of the Korean Physical Society, vol. 70, no. 11, Jun. 2017.

[17]  D. Amir, R. R. Nasaruddin, N. S. Engliman, S. Sulaiman and M. S. Mastuli, “Effect of stabilizers in the synthesis of silver nanoparticles and methylene blue oxidation,” in 6th International Conference on Biotechnology Engineering, vol. 1192, 2021, Art. no. 012031.

[18]  V. Kulikouskaya, K. Hileuskaya, A. Kraskouski, I. Kozerozhets, E. Stepanova, I. Kuzminski, L. You, and V. Agabekov, “Chitosan-capped silver nanoparticles: A comprehensive study of polymer molecular weight effect on the reaction kinetic, physicochemical properties, and synergistic antibacterial potential,” SPE Polymers, vol. 3, pp. 77–90, Jan. 2022.

[19]  M. A. Taher, E. Khojah, M. S. Darwish, E. A. Elsherbiny, A. A. Elawady, and D. H. Dawood, “Biosynthesis of silver nanoparticles by polysaccharide of Leucaena leucocephala seeds and their anticancer, antifungal properties and as preservative of composite milk sample,” Journal of Nanomaterials, vol. 2022, Jan. 2022, Art. no. 7490221.

[20]  A. Dzimitrowicz, A. Motyka-Pomagruk, P. Cyganowski, W. Babinska, D. Terefinko, P. Jamroz, E. Lojkowska, P. Pohl, and W. Sledz, “Antibacterial activity of fructose-stabilized silver nanoparticles produced by direct current atmospheric pressure glow discharge towards quarantine pests,” Nanomaterials, vol. 8, no. 10, p. 751, Sep. 2018.

[21]  H. Yin, M. Zhou, X. Chen, T. F. Wan, L. Jin, S. S. Rao, Y. J. Tan, R. Duan, Y. Zhang, Z. X. Wang, Y. Y. Wang, Z. H. He, M. J. Luo, X. K. Hu, Y. Wang, W. Y. Situ, S. Y. Tang, W. E. Liu, C. Y. Chen, and H. Xie, “Fructose-coated Ångstrom silver prevents sepsis by killing bacteria and attenuating bacterial toxin-induced injuries,” Theranostics, vol. 11, pp. 8152–8171, Jul. 2021.

[22]  N. Mammari, E. Lamouroux, A. Boudier, and R. E. Duval, “Current knowledge on the oxidative-stress-mediated antimicrobial properties of metal-based nanoparticles,” Microorganisms, vol. 10, no. 2, p. 437, Feb. 2022.

[23]  X. Yan, B. He, L. Liu, G. Qu, J. Shi, L. Hu, and G. Jiang, “Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach,” Metallomics, vol. 10, pp. 557–564, Mar. 2018.

[24]  P. R. More, S. Pandit, A. D. Filippis, G. Franci, I. Mijakovic, and M. Galdiero, “Silver nanoparticles: Bactericidal and mechanistic approach against drug resistant pathogens,” Microorganisms, vol. 11, no. 2, p. 369, Feb. 2023.

[25]  C. Corbella, S. Portal, and M. Keidar, “Flexible cold atmospheric plasma jet sources,” Plasma, vol. 6, pp. 72–88, Feb. 2023.

[26]  F. Liu, M. Cai, B. Zhang, Z. Fang, C. Jiang, and K. K. Ostrikov, “Hydrophobic surface modification of polymethyl methacrylate by two-dimensional plasma jet array at atmospheric pressure,” Journal of Vacuum Science & Technology A, vol. 36, Oct. 2018, Art. no. 061302.

[27] M. D. Teli, K. K. Samanta, P. Pandit, S. Basak and S. K. Chattopadhyay, “Low-temperature dyeing of silk fabric atmospheric pressure helium/nitrogen plasma,” Fiber and Polymers, vol. 16, no. 11, pp. 2375–2383, Nov. 2015.

[28] R. Zaplotnik, M. Biscan, D. Popovic, M. Mozetic, and S. Milosevic, “Metastable helium atom density in a single electrode atmospheric plasma jet during sample treatment,” Plasma Sources Science and Technology, vol. 25, May 2016, Art. no. 035023.

[29]  S. Yallappa, J. Manjanna, S. K. Peethambar, A. N. Rajeshwara, and N. D. Satyanarayan, “Green synthesis of silver nanoparticles using Acacia farnesiana (sweet acacia) seed extract under microwave irradiation and their biological assessment,” Journal of Cluster Science, vol. 24, pp. 1081–1092, Jun. 2013.

[30]  A. Karatutlu, A. Barhoum, and A. Sapelkin, “Theories of nanoparticle and nanostructure formation in liquid phase,” in Emerging Applications of Nanoparticles and Architecture Nanostructures. Amsterdam, Netherlands: Elsevier, pp. 597–619, 2018, doi: 10.1016/b978-0-323-51254-1.00020-8.

[31]  B. Dong, N. Xue, G. Mu, M. Wang, Z. Xiao, L. Dai, Z. Wang, D. Huang, H. Qian, and W. Chen, “Synthesis of monodisperse spherical AgNPs by ultrasound-intensified Lee-Meisel method, and quick evaluation via machine learning,” Ultrasonics Sonochemistry, vol. 73, Feb. 2021, Art. no. 105485.

[32]  V. S. Santosh, K. Kondeti, U. Gangal, S. Yatom, and P. J. Bruggeman, “Ag+ reduction and silver nanoparticle synthesis at the plasma–liquid interface by an RF driven atmospheric pressure plasma jet: Mechanisms and the effect of surfactant,” Journal of Vacuum Science and Technology A, vol. 35, Jul. 2017, Art. no. 061302.

[33]  M. Adamowska, B. Pałuba, and W. Hyk, “Electrochemical determination of nanoparticle size: Combined theoretical and experimental study for matrixless silver nanoparticles,” Molecules, vol. 27, Apr. 2022, Art. no. 2592.

[34]  H. Wang, R. Han, M. Yuan, Y. Li, Z. Yu, P. J. Cullen, Q. Du, Y. Yang, and J. Wang, “Evaluation of plasma-activated water: Efficacy, stability, physicochemical properties, and mechanism of inactivation against Escherichia coli,” LWT-Food Science and Technology, vol. 184, Jun. 2023, Art. no. 114969.

[35]  X. Yang, C. Zhang, Q. Li, and J. H. Cheng, “Physicochemical properties of plasma-activated water and its control effects on the quality of strawberries,” Molecules, vol. 28, Mar. 2023, Art. no. 2677.

[36]  P. Traiwatcharanon, K. Timsorn, and C. Wongchoosuk, “Flexible room-temperature resistive humidity sensor based on silver nanoparticles,” Materials Research Express, vol. 4, Aug. 2017, Art. no. 085038.

[37]  N. Raval, R. Maheshwari, D. Kalyane, S. R. Youngren-Ortiz, M. B. Chougule and R. K. Tekade, “Importance of physicochemical characterization of nanoparticles in pharmaceutical product development,” in Basic Fundamentals of Drug Delivery. Massachusetts: Academic Press, pp. 370–400, 2019, doi: 10.1016/B978-0-12-817909-3.00010-8.

[38]  N. T. K. Thanh, N. Maclean, and S. Mahiddine, “Mechanisms of nucleation and growth of nanoparticles in solution,” Chemical Review, vol. 114, pp. 7610–7630, Jul. 2014.

[39]  H. M. Yasin, W. Ahmed, A. Ali, A. S. Bhatti, and N. U. Rehman, “Micro-plasma assisted synthesis of multifunctional D-fructose coated silver nanoparticles,” Materials Research Express, vol. 6, Sep. 2019, Art. no. 1050a2.

[40]  A. J. González Fá, A. Juan, and M. S. D. Nezio, “Synthesis and characterization of silver nanoparticles prepared with honey: The role of carbohydrates,” Analytical Letters, vol. 50, pp. 877–888, Apr. 2017.

[41]  H. T. Phan and A. J. Haes, “What does nanoparticles stability mean?,” Journal of Physical Chemistry C: Nanomaterials and Interfaces, vol. 123, no. 27, pp. 16495–16507, Dec. 2019.

[42]  U. Shuaib, T. Hussain, R. Ahmad, M. Zakaullah, F. E. Mubarik, S. T. Muntaha, and S. Ashraf, “Plasma-liquid synthesis of silver nanoparticles and their antibacterial and antifungal applications,” Materials Research Express, vol. 7, Mar. 2020, Art. no. 035015.

[43]  S. Tang and J. Zheng, “Antibacterial activity of silver nanoparticles: Structural effects,” Advanced Healthcare Materials, vol. 7, May 2018, Art. no. e1701503.

Full Text: PDF

DOI: 10.14416/j.asep.2024.09.010

Refbacks

  • There are currently no refbacks.