Page Header

Sonophotopythochemical Functionalization of Graphene Oxide - Al - Zn Bimetal Nanocomposite for Corrosion Inhibition

Carlou Siga-an Eguico, Maribel Mago Abanto, Hershey Tambo Cendaña, Denisse Anne Perez Famero, Kauthar Belandres Pediongco, Albert Dela Cruz Evangelista, Rugi Vicente Del Castillo Rubi

Abstract


The corrosion performance of steel in the marine environment has been a primary concern of engineers and garnered significant interest due to its industrial significance. To address this concern, the incorporation of green corrosion inhibitors as coating materials in mild steel has been extensively studied recently. This paper explores the synthesis of graphene doped with bimetal aluminum-zinc (GO-Al-Zn) nanocomposites via sonophoto-phytochemical functionalization using Chayote (Sechium edule) leaf extract as the doping agent to produce a corrosion inhibitor. The synthesized nanocomposites were characterized using FTIR, SEM-EDS, XRD, and TEM. The optimal nanocomposite, with a 55% Al - 45% Zn ratio, demonstrated successful bio-reduction, good dispersion, reduced particle size, and a rhombohedral crystal structure. When incorporated into an epoxy coating and applied to mild steel, the GO - 55% Al - 45% Zn coating achieved a high corrosion inhibition efficiency of 98.06% (gravimetric method) and 98.45% (electrochemical method) in 3.5 wt% NaCl solution. This study highlights the promising potential of GO - 55% Al - 45% Zn nanocomposite as an eco-friendly corrosion inhibitor. Future research should explore optimizing the functionalization process and exploring long-term environmental stability.

Keywords



[1]    B. Dong, W. Liu, T. Zhang, L. Chen, Y. Fan, Y. Zhao, W. Yang, and W. Banthukul, “Corrosion failure analysis of low alloy steel and mild steel rebar in tropical marine atmospheric environment: Outdoor exposure and indoor test,” Engineering Failure Analysis, vol. 129, Mar. 2021, Art. no. 105720, doi: 10.1016/j.engfailanal.2021.105720.

[2]    Y. Liu, M. Liu, X. Lu, and Z. Wang, “Effect of temperature and ultraviolet radiation on corrosion behavior of mild steel in high humidity tropical marine atmosphere,” Materials Chemistry and Physics, 2021, Art. no. 124962, doi: 10.1016/j.matchemphys.2021.124962.

[3]    M. Faccini, L. Bautista, L. Soldi, A. M. Escobar, M. Altavilla, M. Calvet, A. Domènech, and E. Domínguez, “Environmentally friendly anticorrosive polymeric coatings,” Applied Sciences (Switzerland), vol. 11, no. 8, 2021, doi: 10.3390/app11083446.

[4]    O. Dagdag, R. Hsissou, A. E. Harfi, A. Berisha, Z. Safi, C. Verma, E. E. Ebenso, M. Ebn Touhami, and M. E. Gouri, “Fabrication of polymer based epoxy resin as effective anti-corrosive coating for steel: Computational modeling reinforced experimental studies,” Surfaces and Interfaces, vol. 18, 2020, doi: 10.1016/j.surfin.2020.100454.

[5]    A. S. Ganie, S. Bano, N. Khan, S. Sultana, Z. Rehman, M. M. Rahman, S. Sabir, F. Coulon, and M. Z. Khan, “Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges,” Chemosphere, vol. 275, 2021, Art. no. 130065, doi: 10.1016/j.chemosphere.2021.130065.

[6]    S. Yadav, A. P. S. Raman, M. B. Singh, I. Massey, P. Singh, C. Verma, and A. AlFantazi, “Green nanoparticles for advanced corrosion protection: Current perspectives and future prospects,” Applied Surface Science Advances, vol. 21, Jun. 2024, Art. no. 100605, doi: 10.1016/j.apsadv.2024.100605.

[7]    S. Liu, Y. Zhu, X. Zheng, X. Lai, R. Jia, and X. Yuan, “Graphene oxide modified by zirconium dioxide to enhance the corrosion resistance of Zinc/Aluminum coatings,” Diamond and Related Materials, vol. 108, Apr. 2020, Art. no. 107868, doi: 10.1016/j.diamond.2020.107868.

[8]    K. A. Chang, S. L. Ley, M. Y. Lee, H. Y. Yaw, S. W. Lee, L. Y. Chew, Y. P. Neo, and K. W. Kong, “Determination of nutritional constituents, antioxidant properties, and α-amylase inhibitory activity of Sechium edule (chayote) shoot from different extraction solvents and cooking methods,” LWT, vol. 151, Nov. 2021, Art. no. 112177, doi: 10.1016/j.lwt.2021.112177.

[9]    R. Mohammadkhani, M. Ramezanzadeh, S. Akbarzadeh, G. Bahlakeh, and B. Ramezanzadeh, “Graphene oxide nanoplatforms reduction by green plant-sourced organic compounds for construction of an active anti-corrosion coating; experimental/electronic-scale DFT-D modeling studies,” Chemical Engineering Journal, vol. 397, Oct. 2020, Art. no. 125433, doi: 10.1016/ j.cej.2020.125433.

[10]  A. Singh, K. R. Ansari, D. S. Chauhan, M. A. Quraishi, H. Lgaz, and I.-M. Chung, “Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium,” Journal of Colloid and Interface Science, vol. 560, pp. 225–236, Feb. 2020, doi: 10.1016/j.jcis.2019.10.040.

[11] P. R. Sivakumar and A. P. Srikanth, “Green corrosion inhibitor: A comparative study,” Sādhanā, vol. 45, no. 1, Feb. 2020, doi: 10.1007/s12046-020-1283-x.

[12] N. Baig, I. Kammakakam, and W. Falath, “Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges,” Materials Advances, vol. 2, no. 6, pp. 1821–1871, Feb. 2021, doi: 10.1039/d0ma00807a.

[13] A. K. Saleh, A. S. Shaban, M. A. Diab, D. Debarnot, and A. S. Elzaref, “Green synthesis and characterization of aluminum oxide nanoparticles using Phoenix dactylifera seed extract along with antimicrobial activity, phytotoxicity, and cytological effects on Vicia faba seeds,” Biomass Conversion and Biorefinery, Sep. 2023, doi: 10.1007/s13399-023-04800-x.

[14] S. Bashir, M. S. Awan, M. A. Farrukh, R. Naidu, S. A. Khan, N. Rafique, S. Ali, I. Hayat, I. Hussain, and M. Z. Khan, “In vivo (Albino mice) and in vitro assimilation and toxicity of zinc oxide nanoparticles in food materials,” International Journal of Nanomedicine, vol. 17, pp. 4073–4085, Sep. 2022, doi: 10.2147/ijn. s372343.

[15] A. S. Daulay, Ridwanto, R. A. Syahputra, and A. Nafitri, “Antioxidant activity test of Chayote (Sechium edule (Jacq.) Swartz) ethanol extract using DPPH method,” Journal of Physics: Conference Series, vol. 1819, no. 1, Mar. 2021, Art. no. 012035, doi: 10.1088/1742-6596/1819/ 1/012035.

[16] A. C. Vilando, V. DC, and F. Joie, Utilization of Low-Cost Waste Materials in Wastewater Treatments. Amsterdam, Netherlands: Elsevier, pp. 99–119, Jan. 2021, doi: 10.1016/b978-0-12-823031-2.00018-5.

[17] F. Rolle and M. Sega, “Use of FTIR spectroscopy for the measurement of CO2 carbon stable isotope ratios,” in 19th International Congress of Metrology, Sep. 2019, doi: 10.1051/ metrology/201905002.

[18] X. Wei, X. Bao, L. Yu, H. Liu, K. Lu, L. Chen, and W. Li, “Correlation between gel strength of starch-based hydrogel and slow release behavior of its embedded urea,” Journal of Polymers and the Environment, vol. 28, no. 3, pp. 863–870, Jan. 2020, doi: 10.1007/s10924-020-01653-7.

[19] Y. Y. Lim, A. Miskon, A. M. A. Zaidi, M. M. H. M. Ahmad, and M. Abu Bakar, “Structural characterization analyses of low brass filler biomaterial for hard tissue implanted scaffold applications,” Materials, vol. 15, no. 4, p. 1421, Feb. 2022, doi: 10.3390/ma15041421.

[20] K. Paperzh, A. Alekseenko, O. Safronenko, A. Nikulin, I. Pankov, and V. Guterman, “UV radiation effect on the microstructure and performance of electrocatalysts based on small Pt nanoparticles synthesized in the liquid phase,” Colloid and Interface Science Communications, vol. 45, Nov. 2021, Art. no. 100517, doi: 10.1016/j.colcom.2021.100517.

[21] D. G. Jr. Goodwin, S.-J. Shen, Y. Lyu, R. Lankone, A. C. Barrios, S. Kabir, F. Perreault, W. Wohlleben, T. Nguyen, and L. Sung, “Graphene/polymer nanocomposite degradation by ultraviolet light: The effects of graphene nanofillers and their potential for release,” Polymer Degradation and Stability, vol. 182, Dec. 2020, Art. no. 109365, doi: 10.1016/ j.polymdegradstab.2020.109365.

[22] L. Gao, S. Mei, H. Ma, and X. Chen, “Ultrasound-assisted green synthesis of gold nanoparticles using citrus peel extract and their enhanced anti-inflammatory activity,” Ultrasonics Sonochemistry, vol. 83, Feb. 2022, Art. no. 105940, doi: 10.1016/j.ultsonch.2022.105940.

[23] S. Faisal, H. Jan, S.A. Shah, S. Shah, A. Khan, M. T. Akbar, M.  Rizwan, F.  Jan, Wajidullah, N. Akhtar, A. Khattak, and S. Syed, “Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of myristica fragrans: Their characterizations and biological and environmental applications,” ACS Omega, vol. 6, no. 14, pp. 9709–9722, Mar. 2021, doi: 10.1021/acsomega.1c00310.

[24] M. N. Nduni, A. M. Osano, and B. Chaka, “Synthesis and characterization of aluminium oxide nanoparticles from waste aluminium foil and potential application in aluminium-ion cell,” Cleaner Engineering and Technology, vol. 3, Jul. 2021, Art. no. 100108, doi: 10.1016/j.clet.2021. 100108.

[25] S. Das, S. Pramanik, M. Hossain, S.  Mukherjee, C. Rajak, P.  Pal, and P. K. Kuiri, “Correlation of defects and crystallite size of ZnO nanoparticles synthesized by mechanical milling,” Indian Journal of Physics, vol. 97, no. 14, pp. 4263–4276, May 2023, doi: 10.1007/s12648-023-02763-3.

[26] D. Y. Hoo, Z. L. Low, D. Y. S. Low, S. Y. Tang, S. Manickam, K. W. Tan, and Z. H. Ban, “Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose,” Ultrasonics Sonochemistry, vol. 90, Nov. 2022, Art. no. 106176, doi: 10.1016/ j.ultsonch.2022.106176

[27] A. Aliyu and C. Srivastava, “Correlation between growth texture, crystallite size, lattice strain and corrosion behavior of copper-carbon nanotube composite coatings,” Surface and Coatings Technology, vol. 405, Nov. 2020, Art. no. 126596, doi: 10.1016/j.surfcoat.2020.126596.

[28] S. Ying, Z. Guan, P. C. Ofoegbu, P. Clubb, C. Rico, F. He, and J. Hong, “Green synthesis of nanoparticles: Current developments and limitations,” Environmental Technology & Innovation, vol. 26, May 2022, Art. no. 102336, doi: 10.1016/j.eti.2022.102336.

[29] B. Zhu, T. Wan, J. Li, C. Meng, X. Du, G. Liu, and Y. Guan, “Graphene-wrapped bimetallic nanoparticles bifunctional electrocatalyst for rechargeable Zn-air battery,” Journal of Electroanalytical Chemistry, vol. 927, Nov. 2022, Art. no. 116946, doi: 10.1016/j.jelechem. 2022.116946.

[30] Y. Y. Lim, A. Miskon, and A. M. A. Zaidi, “Structural strength analyses for low brass filler biomaterial with anti-trauma effects in articular cartilage scaffold design,” Materials, vol. 15, no. 13, Jun. 2022, Art. no. 4446, doi: 10.3390/ma 15134446.

[31]  S. T. Kalajahi, A. Misra, and A. Koerdt, “Nanotechnology to mitigate microbiologically influenced corrosion (MIC),” Frontiers in Nanotechnology, vol. 6, Apr. 2024, doi: 10.3389/ fnano.2024.1340352.

[32]  J. Bao, S. Guo, D. Fan, J. Cheng, Y. Zhang, and X. Pang, “Sonoactivated Nanomaterials: A potent armament for wastewater treatment,” Ultrasonics Sonochemistry, vol. 99, Oct. 2023, Art. no. 106569, doi: 10.1016/j.ultsonch.2023. 106569.

[33] Y. Sui, Y. Cui, X. Meng, and Q. Zhou, “Research progress on the correlation between properties of nanoparticles and their dispersion states in polymer matrix,” Journal of Applied Polymer Science, vol. 139, no. 19, Dec. 2021, Art. no. 52096, doi: 10.1002/app.52096.

[34] T. Attar, A. Benchadli, and E. Choukchou-Braham, “Inhibition of corrosion of copper by polyvinylpyrrolidone-iodine in sulfuric acid medium,” Algerian Journal of Materials Chemistry, vol. 05, pp. 01–08, Jan. 2022, doi: 10.5281/zenodo.5855835.

[35]  A. B. Rashid, M. Haque, S. M. M. Islam, and K. M. R. U. Labib, “Nanotechnology-enhanced fiber-reinforced polymer composites: Recent advancements on processing techniques and applications,” Heliyon, vol. 10, no. 2, Jan. 2024, Art. no. e24692, doi: 10.1016/j.heliyon.2024.e24692.

[36]  K. A. Altammar, “A review on nanoparticles: Characteristics, synthesis, applications, and challenges,” Frontiers in Microbiology, vol. 14, Apr. 2023, Art. no. 1155622, doi: 10.3389/ fmicb.2023.1155622.

[37]  L. Xiao, Q. Liu, J. Wang, N. Chen, J. Chen, J. Song, X. Zhang, and K. Xiao, “Study on corrosion mechanism of Al–Zn coatings in the simulated polluted marine atmosphere,” Journal of Materials Research and Technology, vol. 25, pp. 6446–6458, Jul. 2023, doi: 10.1016/j.jmrt. 2023.07.091.

[38] B. Shyamvarnan, S. Shanmugapriya, J. Arockia Selvi, P. Kamaraj, and R. Mohankumar, “Corrosion inhibition effect of Elettaria cardamomum extract on mild steel in 3.5% NaCl medium,” Materials Today: Proceedings, vol. 40, pp. S192–S197, 2021, doi: 10.1016/j.matpr. 2020.09.085.

[39] Q. Shi, H. Wu, P. Zhang, D. Wang, J. Wang, and X. Jie, “Balanced anti-corrosion action of reduced graphene oxide in Zn-Al coating during medium-term exposure to NaCl solution,” Coatings, vol. 13, no. 9, p. 1570, Sep. 2023, doi: 10.3390/coatings13091570.

[40]  A. B. D. Nandiyanto, R. Ragadhita, and M. Fiandini, “Interpretation of fourier transform infrared spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition,” Indonesian Journal of Science and Technology, vol. 8, no. 1, pp. 113–126, Sep. 2022, doi: 10.17509/ijost.v8i1.53297.

[41] E. Bibi, “Synthesis and characterization of Al2O3 nanoparticles from Trachyspermum ammi,” Agronomy & Agricultural Science, vol. 6, no. 2, pp. 1–5, Dec. 2023, doi: 10.24966/aas-8292/ 100050.

[42] O. R. Kam, I. Garikoe, C. Bakouan, and B. Guel, “Low-cost synthesis of alumina nanoparticles and their usage for bisphenol-A removal from aqueous solutions,” Processes, vol. 9, no. 10, p. 1709, Sep. 2021, doi: 10.3390/pr9101709.

[43]  A. A. Al-Amiery, W. N. R. W. Isahak, and W. K. Al-Azzawi, “Corrosion inhibitors: Natural and synthetic organic inhibitors,” Lubricants, vol. 11, no. 4, p. 174, Apr. 2023, doi: 10.3390/ lubricants11040174.

Full Text: PDF

DOI: 10.14416/j.asep.2024.10.004

Refbacks

  • There are currently no refbacks.