Page Header

A Review on the Effect of Ultrasonic-Assisted Curing on the Quality of Meat Products

Yongzheng Hu, Suvaluk Asavasanti, Roungdao Klinjapo, Watanya Chaisayan, Patchanee Yasurin, Nicharee Wisuthiphaet, Qiuxia Shen

Abstract


Meat products can deteriorate during storage posing a threat to human health due to the action of microorganisms and enzymes. Curing is widely used as a preservation method that can extend shelf life, improve product quality, and impart flavor. In industrial production, business operators seek to enhance the curing efficiency of their products, while consumers expect stable product quality. These demands have prompted the exploration of efficient solutions for curing. Ultrasound technology has attracted widespread attention as a new nonthermal food processing technology due to its potential for reducing processing time, improving meat product quality, and lowering costs. Numerous studies have shown that ultrasound treatment can effectively enhance curing efficiency and improve meat product quality through cavitation effects, mechanical effects, and thermal effects. The basic principles of ultrasound technology and the impacts and mechanisms of ultrasound-assisted curing techniques on curing efficiency and quality in meat products are discussed. This review aims to provide a valuable theoretical foundation for the application of ultrasound technology to address the health risks and costs caused by slow curing efficiency and unstable product quality.

Keywords



[1]           S. Arokiyaraj, Y. Dinakarkumar, and H. Shin, “A comprehensive overview on the preservation techniques and packaging of processed meat products: Emphasis on natural derivatives,” Journal of King Saud University - Science, vol. 36, no. 1, Jan. 2024, Art. no. 103032, doi: 10.1016/j.jksus.2023.103032.

[2]           M. F. Iulietto, P. Sechi, E. Borgogni, and B. T. Cenci-Goga, “Meat spoilage: A critical review of a neglected alteration due to ropy slime producing bacteria,” Italian Journal of Animal Science, vol. 14, no. 3, Jan. 2015, doi: 10.4081/ijas.2015.4011.

[3]           D. S. Dang, L. J. Bastarrachea, S. Martini, and S. K. Matarneh, “Crystallization behavior and quality of frozen meat,” Foods (Basel, Switzerland), vol. 10, no. 11, Nov. 2021, Art. no. 2707, doi: 10.3390/foods10112707.

[4]           E. A. Otoo, F. C. K. Ocloo, and V. Appiah, “Effect of gamma irradiation on shelf life of smoked guinea fowl (Numida meleagris) meat stored at refrigeration temperature,” Radiation Physics and Chemistry, vol. 194, May 2022, Art. no. 110041, doi: 10.1016/j.radphyschem.2022.110041.

[5]           C. Yin, J. Wang, J. Qian, K. Xiong, and M. Zhang, “Quality changes of rainbow trout stored under different packaging conditions and mathematical modeling for predicting the shelf life,” Food Packaging and Shelf Life, vol. 32, Jun. 2022, Art. no. 100824, doi: 10.1016/j.fpsl. 2022.100824.

[6]           H. Luo, Z. Sheng, C. Guo, R. Jia, and W. Yang, “Quality attributes enhancement of ready-to-eat hairtail fish balls by high-pressure processing,” LWT, vol. 147, Jul. 2021, Art. no. 111658, doi: 10.1016/j.lwt.2021.111658.

[7]           H. Mohammadi, A. Kamkar, A. Misaghi, M. Zunabovic-Pichler, and S. Fatehi, “Nanocomposite films with CMC, okra mucilage, and ZnO nanoparticles: Extending the shelf-life of chicken breast meat,” Food Packaging and Shelf Life, vol. 21, Sep. 2019, Art. no. 100330, doi: 10.1016/j.fpsl.2019. 100330.

[8]           I. Gómez, R. Janardhanan, F. C. Ibañez, and M. J. Beriain, “The effects of processing and preservation technologies on meat quality: sensory and nutritional aspects,” Foods (Basel, Switzerland), vol. 9, no. 10, Oct. 2020, Art. no. 1416, doi: 10.3390/foods9101416.

[9]           B. Y. Cruz-Garibaldi, A. D. Alarcon-Rojo, M. Huerta-Jimenez, I. A. Garcia-Galicia, and L. M. Carrillo-Lopez, “Efficacy of ultrasonic-assisted curing is dependent on muscle size and ultrasonication system,” Processes, vol. 8, no. 9, Sep. 2020, Art. no. 1015, doi: 10.3390/ pr8091015.

[10]         S. Jia, H. Shen, D. Wang, S. Liu, Y. Ding, and X. Zhou, “Novel NaCl reduction technologies for dry-cured meat products and their mechanisms: A comprehensive review,” Food Chemistry, vol. 431, Jan. 2024, Art. no. 137142, doi: 10.1016/j.foodchem.2023.137142.

[11]         L. de Lima Alves, J. Z. Donadel, D. R. Athayde, M. S. da Silva, B. Klein, M. B. Fagundes, C. R. de Menezes, J. S. Barin, P. C. B. Campagnol, R. Wagner, and A. J. Cichoski, “Effect of ultrasound on proteolysis and the formation of volatile compounds in dry fermented sausages,” Ultrasonics Sonochemistry, vol. 67, Oct. 2020, Art. no. 105161, doi: 10.1016/j.ultsonch.2020. 105161.

[12]         X. Liu, Y. Zhang, D. Li, and Y. Luo, “Characterization of the microbiota in lightly salted bighead carp (Aristichthys nobilis) fillets stored at 4 °C,” Food Microbiology, vol. 62, pp. 106–111, Apr. 2017, doi: 10.1016/j.fm. 2016.10.007.

[13]         C. Y. Zhou, Q. Xia, J. He, Y. Y. Sun, Y. L. Dang, G. H. Zhou, F. Geng, D. D. Pan, and J. X. Cao, “Insights into ultrasonic treatment on the mechanism of proteolysis and taste improvement of defective dry-cured ham,” Food Chemistry, vol. 388, Sep. 2022, Art. no. 133059, doi: 10.1016/j.foodchem.2022.133059.

[14]         M. Bampi, N. N. Domschke, F. C. Schmidt, and J. B. Laurindo, “Influence of vacuum application, acid addition and partial replacement of NaCl by KCl on the mass transfer during salting of beef cuts,” LWT, vol. 74, pp. 26–33, Dec. 2016, doi: 10.1016/j.lwt.2016.07.009.

[15]         M. P. Philipsen and T. B. Moeslund, “Intelligent injection curing of bacon,” Procedia Manufacturing, vol. 38, pp. 148–155, Jan. 2019, doi: 10.1016/j.promfg.2020.01.020.

[16]         K. C. A. N’Gatta, A. Kondjoyan, R. Favier, J. Sicard, J. Rouel, D. Gruffat, and P.-S. Mirade, “Impact of combining tumbling and sous-vide cooking processes on the tenderness, cooking losses and colour of bovine meat,” Processes, vol. 10, no. 6, 2022, Art. no. 1229, doi: 10.3390/pr10061229.

[17]         F. Yin, X. Bai, K. Wang, A. Ru, L. Xu, W. Tian, J. Hao, C. Zhu, and G. Zhao, “Mechanism of tumbling-curing to improve beef quality: Insights from the structural and functional properties of myofibrillar protein,” LWT, vol. 207, Sep. 2024, Art. no. 116692, doi: 10.1016/j.lwt.2024.116692.

[18]         C. C. O’Flynn, M. C. Cruz-Romero, D. Troy, A. M. Mullen, and J. P. Kerry, “The application of high-pressure treatment in the reduction of salt levels in reduced-phosphate breakfast sausages,” Meat Science, vol. 96, no. 3, pp. 1266–1274, Mar. 2014, doi: 10.1016/j.meatsci. 2013.11.010.

[19]         T. Gao, J. Li, L. Zhang, Y. Jiang, R. Ma, L. Song, F. Gao, and G. Zhou, “Effect of different tumbling marination treatments on the quality characteristics of prepared pork chops,” Asian-Australasian Journal of Animal Sciences, vol. 28, no. 2, pp. 260–267, Feb. 2015, doi: 10.5713 /ajas.14.0511.

[20]         Z. Wang, W. Xu, N. Kang, Q. Shen, and D. Zhang, “Microstructural, protein denaturation and water holding properties of lamb under pulse vacuum brining,” Meat Science, vol. 113, pp. 132–138, Mar. 2016, doi: 10.1016/j.meatsci. 2015.11.015.

[21]         C. Zhu, F. Yin, W. Tian, Y. Zhu, L. Zhao, and G. Zhao, “Application of a pressure-transform tumbling assisted curing technique for improving the tenderness of restructured pork chops,” LWT, vol. 111, pp. 125–132, Aug. 2019, doi: 10.1016/j.lwt.2019.05.029.

[22]         C. Zhang, Q. Sun, Q. Chen, Q. Liu, and B. Kong, “Effectiveness of ultrasound-assisted immersion thawing on the thawing rate and physicochemical properties of chicken breast muscle,” Journal of Food Science, vol. 86, no. 5, pp. 1692–1703, May 2021, doi: 10.1111/ 1750-3841.15699.

[23]         A. D. Alarcon-Rojo, H. Janacua, J. C. Rodriguez, L. Paniwnyk, and T. J. Mason, “Power ultrasound in meat processing,” Meat Science, vol. 107, pp. 86–93, Sep. 2015, doi: 10.1016/j.meatsci.2015.04.015.

[24]         T. S. Awad, H. A. Moharram, O. E. Shaltout, D. Asker, and M. M. Youssef, “Applications of ultrasound in analysis, processing and quality control of food: A review,” Food Research International, vol. 48, no. 2, pp. 410–427, Oct. 2012, doi: 10.1016/j.foodres.2012.05.004.

[25]         A. C. Soria and M. Villamiel, “Effect of ultrasound on the technological properties and bioactivity of food: A review,” Trends in Food Science & Technology, vol. 21, no. 7, pp. 323–331, Jul. 2010, doi: 10.1016/j.tifs.2010.04.003.

[26]         A. D. Alarcon-Rojo, L. M. Carrillo-Lopez, R. Reyes-Villagrana, M. Huerta-Jiménez, and I. A. Garcia-Galicia, “Ultrasound and meat quality: A review,” Ultrasonics Sonochemistry, vol. 55, pp. 369–382, Jul. 2019, doi: 10.1016/j.ultsonch. 2018.09.016.

[27]         M. R. Kasaai, “Input power-mechanism relationship for ultrasonic Irradiation: Food and polymer applications,” Natural Science, vol. 5, no. 8, pp. 14–22, Aug. 2013, doi: 10.4236/ns. 2013.58A2003.

[28]         L. Shen, S. Pang, M. Zhong, Y. Sun, A. Qayum, Y. Liu, A. Rashid, B. Xu, Q. Liang, H. Ma, and X. Ren, “A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies,” Ultrasonics Sonochemistry, vol. 101, Dec. 2023, Art. no. 106646, doi: 10.1016/j.ultsonch.2023.106646.

[29]         Y. Liu, Q. Yin, Y. Luo, Z. Huang, Q. Cheng, W. Zhang, B. Zhou, Y. Zhou, and Z. Ma, “Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves,” Ultrasonics Sonochemistry, vol. 96, Jun. 2023, Art. no. 106441, doi: 10.1016/j.ultsonch.2023.106441.

[30]         J. A. Gómez-Salazar, D. A. Ochoa-Montes, A. Cerón-García, C. Ozuna, and M. E. Sosa-Morales, “Effect of acid marination assisted by power ultrasound on the quality of rabbit meat,” Journal of Food Quality, vol. 2018, Feb. 2018, Art. no. 5754930, doi: 10.1155/2018/5754930.

[31]         Y. S. V. Leães, J. S. Silva, S. S. Robalo, M. B. Pinton, S. P. dos Santos, R. Wagner, C. C. B. Brasil, C. R. de Menezes, J. S. Barin, P. C. B. Campagnol, and A. J. Cichoski, “Combined effect of ultrasound and basic electrolyzed water on the microbiological and oxidative profile of low-sodium mortadellas,” International Journal of Food Microbiology, vol. 353, Sep. 2021, Art. no. 109310, doi: 10.1016/ j.ijfoodmicro.2021.109310.

[32]         C. Arzeni, K. Martínez, P. Zema, A. Arias, O. E. Pérez, and A. M. R. Pilosof, “Comparative study of high intensity ultrasound effects on food proteins functionality,” Journal of Food Engineering, vol. 108, no. 3, pp. 463–472, Feb. 2012, doi: 10.1016/j.jfoodeng.2011.08.018.

[33]         X. Zhao, Y. Sun, Y. Zhou, and Y. Leng, “Effect of ultrasonic-assisted brining on mass transfer of beef,” Journal of Food Process Engineering, vol. 42, no. 7, Nov. 2019, Art. no. e13257, doi: 10.1111/jfpe.13257.

[34]         K. Lukić, M. Brnčić, N. Ćurko, M. Tomašević, D. Valinger, G. I. Denoya, F. J. Barba, and K. K. Ganić, “Effects of high power ultrasound treatments on the phenolic, chromatic and aroma composition of young and aged red wine,” Ultrasonics Sonochemistry, vol. 59, Dec. 2019, Art. no. 104725, doi: 10.1016/j.ultsonch. 2019.104725.

[35]         S. M. Gadalkar and V. K. Rathod, “Extraction of watermelon seed proteins with enhanced functional properties using ultrasound,” Preparative Biochemistry & Biotechnology, vol. 50, no. 2, pp. 133–140, 2020, doi: 10.1080/ 10826068.2019.1679173.

[36]         B. Wu, C. Qiu, Y. Guo, C. Zhang, X. Guo, Y. Bouhile, and H. Ma, “Ultrasonic-assisted flowing water thawing of frozen beef with different frequency modes: Effects on thawing efficiency, quality characteristics and microstructure,” Food Research International, vol. 157, Jul. 2022, Art. no. 111484, doi: 10.1016/j.foodres.2022.111484.

[37]         A. Margean, M. I. Lupu, E. Alexa, V. Padureanu, C. M. Canja, I. Cocan, M. Negrea, G. Calefariu, and M.-A. Poiana, “An overview of effects induced by pasteurization and high-power ultrasound treatment on the quality of red grape juice,” Molecules (Basel, Switzerland), vol. 25, no. 7, Apr. 2020, Art. no. 1669, doi: 10.3390/molecules25071669.

[38]         M. C. Tan, N. L. Chin, Y. A. Yusof, and J. Abdullah, “Effect of high power ultrasonic treatment on whey protein foaming quality,” International Journal of Food Science & Technology, vol. 51, no. 3, pp. 617–624, Mar. 2016, doi: 10.1111/ijfs.13013.

[39]         L. Zhou, J. Zhang, Y. Yin, W. Zhang, and Y. Yang, “Effects of Ultrasound-assisted emulsification on the emulsifying and rheological properties of myofibrillar protein stabilized pork fat emulsions,” Foods (Basel, Switzerland), vol. 10, no. 6, May 2021, Art. no. 1201, doi: 10.3390/foods10061201.

[40]         A. O. Oladejo, M.-A. M. Ekpene, D. I. Onwude, U. E. Assian, and O. M. Nkem, “Effects of ultrasound pretreatments on the drying kinetics of yellow cassava during convective hot air drying,” Journal of Food Processing and Preservation, vol. 45, no. 3, Mar. 2021, Art. no. e15251, doi: 10.1111/jfpp.15251.

[41]         R. I. Barbhuiya, P. Singha, and S. K. Singh, “A comprehensive review on impact of non-thermal processing on the structural changes of food components,” Food Research International, vol. 149, Nov. 2021, Art. no. 110647, doi: 10.1016/j.foodres.2021.110647.

[42]         E. S. Inguglia, C. M. Burgess, J. P. Kerry, and B. K. Tiwari, “Ultrasound-assisted marination: Role of frequencies and treatment time on the quality of sodium-reduced poultry meat,” Foods, vol. 8, no. 10, 2019. Art. no. 473, doi: 10.3390/foods8100473.

[43]         D. Kang, Y. Jiang, L. Xing, G. Zhou, and W. Zhang, “Inactivation of Escherichia coli O157:H7 and Bacillus cereus by power ultrasound during the curing processing in brining liquid and beef,” Food Research International, vol. 102, pp. 717–727, Dec. 2017, doi: 10.1016/j.foodres.2017.09.062.

[44]         Y. Zhou, M. Hu, and L. Wang, “Effects of different curing methods on edible quality and myofibrillar protein characteristics of pork,” Food Chemistry, vol. 387, Sep. 2022, Art. no. 132872, doi: 10.1016/j.foodchem.2022.132872.

[45]         U. Roobab, B.-R. Chen, G. M. Madni, S.-M. Guo, X.-A. Zeng, G. Abdi, and R. M. Aadil, “Enhancing chicken breast meat quality through ultrasonication: Physicochemical, palatability, and amino acid profiles,” Ultrasonics Sonochemistry, vol. 104, Mar. 2024, Art. no. 106824, doi: 10.1016/j.ultsonch.2024.106824.

[46]         I. Habinshuti, M. Zhang, H.-N. Sun, and T.-H. Mu, “Effects of ultrasound-assisted enzymatic hydrolysis and monosaccharides on structural, antioxidant and flavour characteristics of Maillard reaction products from sweet potato protein hydrolysates,” International Journal of Food Science & Technology, vol. 56, no. 11, pp. 6086–6099, 2021, doi: 10.1111/ijfs.15249.

[47]         E. S. Inguglia, Z. Zhang, C. Burgess, J. P. Kerry, and B. K. Tiwari, “Influence of extrinsic operational parameters on salt diffusion during ultrasound assisted meat curing,” Ultrasonics, vol. 83, pp. 164–170, 2018, doi: 10.1016/ j.ultras.2017.03.017

[48]         C. K. McDonnell, P. Allen, G. Duane, C. Morin, E. Casey, and J. G. Lyng, “One-directional modelling to assess the mechanistic actions of power ultrasound on NaCl diffusion in pork,” Ultrasonics Sonochemistry, vol. 40, pp. 206–212, Jan. 2018, doi: 10.1016/j.ultsonch.2017. 06.025.

[49]         G. Jin, Y. Liu, Y. Zhang, C. Li, L. He, Y. Zhang, Y. Wang, and J. Cao, “Underlying formation mechanisms of ultrasound-assisted brined porcine meat: The role of physicochemical modification, myofiber fragmentation and histological organization,” Ultrasonics Sonochemistry, vol. 94, Mar. 2023, Art. no. 106318, doi: 10.1016/j.ultsonch.2023.106318.

[50]         A. Visy, G. Jónás, D. Szakos, Z. Horváth-Mezőfi, K. I. Hidas, A. Barkó, and L. Friedrich, “Evaluation of ultrasound and microbubbles effect on pork meat during brining process,” Ultrasonics Sonochemistry, vol. 75, Jul. 2021, Art. no. 105589, doi: 10.1016/j.ultsonch.2021. 105589.

[51]         Y. Yao, R. Han, F. Li, J. Tang, and Y. Jiao, “Mass transfer enhancement of tuna brining with different NaCl concentrations assisted by ultrasound,” Ultrasonics Sonochemistry, vol. 85, Apr. 2022, Art. no. 105989, doi: 10.1016/ j.ultsonch.2022.105989

[52]         H. Bai, L. Li, Y. Wu, S. Chen, Y. Zhao, Q. Cai, and Y. Wang, “Ultrasound improves the low-sodium salt curing of sea bass: Insights into the effects of ultrasound on texture, microstructure, and flavor characteristics,” Ultrasonics Sonochemistry, vol. 100, Nov. 2023, Art. no. 106597, doi: 10.1016/j.ultsonch.2023.106597.

[53]         M. A. R. Sanches, N. M. Lapinskas, T. L. Barretto, A. C. da Silva-Barretto, and J. Telis-Romero, “Improving salt diffusion by ultrasound application during wet salting of pork meat: A mathematical modeling approach,” Journal of Food Process Engineering, vol. 46, no. 6, Jun. 2023, Art. no. e14143, doi: 10.1111/ jfpe.14143.

[54]         E. Aykın-Dinçer, “Application of ultrasound-assisted vacuum impregnation for improving the diffusion of salt in beef cubes,” Meat Science, vol. 176, Jun. 2021, Art. no. 108469, doi: 10.1016/j.meatsci.2021.108469.

[55]         L. Guo, X. Zhang, Y. Guo, Z. Chen, and H. Ma, “Evaluation of ultrasonic-assisted pickling with different frequencies on NaCl transport, impedance properties, and microstructure in pork,” Food Chemistry, vol. 430, 2024, Art. no. 137003, doi: 10.1016/j.foodchem.2023.137003.

[56]         D. Kang, A. Wang, G. Zhou, W. Zhang, S. Xu, and G. Guo, “Power ultrasonic on mass transport of beef: Effects of ultrasound intensity and NaCl concentration,” Innovative Food Science & Emerging Technologies, vol. 35, pp. 36–44, 2016, doi: 10.1016/j.ifset.2016.03.009.

[57]         C. K. Yeung and S. C. Huang, “Effects of ultrasound pretreatment and ageing processing on quality and tenderness of pork loin,” Journal of Food and Nutrition Research, vol. 5, no. 11, pp. 809–816, 2017, doi:10.12691/jfnr-5-11-3.

[58]         L. Chen, X.-C. Feng, Y. Zhang, X. Liu, W. Zhang, C. Li, N. Ullah, X. Xu, and G. Zhou, “Effects of ultrasonic processing on caspase-3, calpain expression and myofibrillar structure of chicken during post-mortem ageing,” Food Chemistry, vol. 177, pp. 280–287, 2015, doi: 10.1016/j.foodchem.2014.11.064.

[59]         Y. Zou, H. Shi, P. Xu, D. Jiang, X. Zhang, W. Xu, and D. Wang, “Combined effect of ultrasound and sodium bicarbonate marination on chicken breast tenderness and its molecular mechanism,” Ultrasonics Sonochemistry, vol. 59, Dec. 2019, Art. no. 104735, doi: 10.1016/j.ultsonch.2019.104735.

[60]         J. Lepetit, “A theoretical approach of the relationships between collagen content, collagen cross-links and meat tenderness,” Meat Science, vol. 76, no. 1, pp. 147–159, May 2007, doi: 10.1016/j.meatsci.2006.10.027.

[61]         H. J. Chang, X. L. Xu, G. H. Zhou, C. B. Li, and M. Huang, “Effects of characteristics changes of collagen on meat physicochemical properties of beef semitendinosus muscle during ultrasonic processing,” Food and Bioprocess Technology, vol. 5, no. 1, pp. 285–297, Jan. 2012, doi: 10.1007/s11947-009-0269-9.

[62]         F. Got, J. Culioli, P. Berge, X. Vignon, T. Astruc, J. M. Quideau, and M. Lethiecq, “Effects of high-intensity high-frequency ultrasound on ageing rate, ultrastructure and some physico-chemical properties of beef,” Meat Science, vol. 51, no. 1, pp. 35–42, Jan. 1999, doi: 10.1016/s0309-1740(98)00094-1.

[63]         Y. Gao, Z. Zhu, T. Huang, M. Sun, Y. Hua, Y. Huang, and M. Huang, “Ultrasound combined with post-mortem aging enriches antioxidant peptides in Muscovy ducks,” LWT, vol. 205, Aug. 2024, Art. no. 116482, doi: 10.1016/j.lwt. 2024.116482.

[64]         Y. Fu, J. F. Young, and M. Therkildsen, “Bioactive peptides in beef: Endogenous generation through postmortem aging,” Meat Science, vol. 123, pp. 134–142, Jan. 2017, doi: 10.1016/j.meatsci.2016.09.015.

[65]         A. Wang, D. Kang, W. Zhang, C. Zhang, Y. Zou, and G. Zhou, “Changes in calpain activity, protein degradation and microstructure of beef M. semitendinosus by the application of ultrasound,” Food Chemistry, vol. 245, pp. 724–730, 2018, doi: 10.1016/j.foodchem.2017. 12.003.

[66]         Z.-L. Yu, W.-C. Zeng, and X.-L. Lu, “Influence of ultrasound to the activity of tyrosinase,” Ultrasonics Sonochemistry, vol. 20, no. 3, pp. 805–809, May 2013, doi: 10.1016/j.ultsonch. 2012.11.006.

[67]         G. Bao, J. Niu, S. Li, L. Zhang, and Y. Luo, “Effects of ultrasound pretreatment on the quality, nutrients and volatile compounds of dry-cured yak meat,” Ultrasonics Sonochemistry, vol. 82, Jan. 2022, Art. no. 105864, doi: 10.1016/j.ultsonch.2021.105864.

[68]         J. G. Lyng, P. Allen, and B. M. Mckenna, “The influence of high intensity ultrasound baths on aspects of beef tenderness,” Journal of Muscle Foods, vol. 8, no. 3, pp. 237–249, May 2007, doi: 10.1111/j.1745-4573.1997.tb00630.x.

[69]         C. Ruedt, M. Gibis, and J. Weiss, “Meat color and iridescence: Origin, analysis, and approaches to modulation,” Comprehensive Reviews in Food Science and Food Safety, vol. 22, no. 4, pp. 3366–3394, 2023, doi: 10.1111/ 1541-4337.13191.

[70]         R. Domínguez, M. Pateiro, M. Gagaoua, F. J. Barba, W. Zhang, and J. M. Lorenzo, “A comprehensive review on lipid oxidation in meat and meat products,” Antioxidants, vol. 8, no. 10, Oct. 2019, Art. no. 429, doi: 10.3390/ antiox8100429.

[71]         J. Stadnik and Z. J. Dolatowski, “Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus),” European Food Research and Technology, vol. 233, no. 4, pp. 553–559, Oct. 2011, doi: 10.1007/s00217-011-1550-5.

[72]         J. Tang, C. Faustman, R. A. Mancini, M. Seyfert, and M. C. Hunt, “The effects of freeze–thaw and sonication on mitochondrial oxygen consumption, electron transport chain-linked metmyoglobin reduction, lipid oxidation, and oxymyoglobin oxidation,” Meat Science, vol. 74, no. 3, pp. 510–515, Nov. 2006, doi: 10.1016/j.meatsci.2006.04.021.

[73]         S. Diaz-Almanza, R. Reyes-Villagrana, A. D. Alarcon-Rojo, M. Huerta-Jimenez, L. M. Carrillo-Lopez, C. Estepp, J. Urbina-Perez, and I. A. Garcia-Galicia, “Time matters when ultrasonicating beef: The best time for tenderness is not the best for reducing microbial counts,” Journal of Food Process Engineering, vol. 42, no. 6, 2019, Art. no. e13210, doi: 10.1111/jfpe.13210.

[74]         F. W. Pohlman, M. E. Dikeman, and D. H. Kropf, “Effects of high intensity ultrasound treatment, storage time and cooking method on shear, sensory, instrumental color and cooking properties of packaged and unpackaged beef pectoralis muscle,” Meat Science, vol. 46, no. 1, pp. 89–100, May 1997, doi: 10.1016/S0309-1740(96)00105-2.

[75]         A. L. Sikes, R. Mawson, J. Stark, and R. Warner, “Quality properties of pre- and post-rigor beef muscle after interventions with high frequency ultrasound,” Ultrasonics Sonochemistry, vol. 21, no. 6, pp. 2138–2143, Nov. 2014, doi: 10.1016/j.ultsonch.2014.03.008.

[76]         M. Seo, H. L. Jeong, S. Han, I. Kang, and S.-D. Ha, “Impact of ethanol and ultrasound treatment on mesophilic aerobic bacteria, coliforms, and Salmonella Typhimurium on chicken skin,” Poultry Science, vol. 98, pp. 6954-6963, Dec. 2019, doi: 10.3382/ps/pez486.

[77]         Y. Zou, D. Kang, R. Liu, J. Qi, G. Zhou, and W. Zhang, “Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef,” Ultrasonics Sonochemistry, vol. 46, pp. 36–45, Sep. 2018, doi: 10.1016/j. ultsonch.2018.04.005.

[78]         C. Y. Zhou, Q. Xia, J. He, Y. Y. Sun, Y. L. Dang, C. R. Ou, D. D. Pan, J. X. Cao, and G. H. Zhou, “Improvement of ultrasound-assisted thermal treatment on organoleptic quality, rheological behavior and flavor of defective dry-cured ham,” Food Bioscience, vol. 43, Oct. 2021, Art. no. 101310, doi: 10.1016/j.fbio.2021. 101310.

[79]         J. Zhang, W. Zhang, L. Zhou, and R. Zhang, “Study on the influences of ultrasound on the flavor profile of unsmoked bacon and its underlying metabolic mechanism by using HS-GC-IMS,” Ultrasonics Sonochemistry, vol. 80, Dec. 2021, Art. no. 105807, doi: 10.1016/j. ultsonch.2021.105807.

[80]         L. P. Fallavena, L. D. F. Marczak, and G. D. Mercali, “Ultrasound application for quality improvement of beef Biceps femoris physicochemical characteristics,” LWT, vol. 118, Jan. 2020, Art. no. 108817, doi: 10.1016/ j.lwt.2019.108817.

[81]         H. Yu, S. Yu, J. Guo, J. Wang, C. Mei, S. H. Abbas Raza, G. Cheng, and L. Zan, “Comprehensive analysis of transcriptome and metabolome reveals regulatory mechanism of intramuscular fat content in beef cattle,” Journal of Agricultural and Food Chemistry, vol. 72, no. 6, pp. 2911–2924, Feb. 2024, doi: 10.1021/acs.jafc.3c07844.

[82]         B. Wang, K. Qin, K. Qi, R. Zhang, Z. Xu, and X. Men, “Construction of a molecular regulatory network for lipids and volatile flavor in Chinese indigenous and hybrid pig pork through integrating multi-omics analysis,” LWT, vol. 199, May 2024, Art. no. 116143, doi: 10.1016/j.lwt.2024.116143.

[83]         J. M. Pérez-Andrés, C. M. G. Charoux, P. J. Cullen, and B. K. Tiwari, “Chemical modifications of lipids and proteins by nonthermal food processing technologies,” Journal of Agricultural and Food Chemistry, vol. 66, no. 20, pp. 5041–5054, May 2018, doi: 10.1021/acs.jafc.7b06055.

[84]         J. Riener, F. Noci, D. A. Cronin, D. J. Morgan, and J. G. Lyng, “Characterisation of volatile compounds generated in milk by high intensity ultrasound,” International Dairy Journal, vol. 19, no. 4, pp. 269–272, Apr. 2009, doi: 10.1016/j.idairyj.2008.10.017.

[85]         J. Wang, Y. Yang, X. Tang, W. Ni, and L. Zhou, “Effects of pulsed ultrasound on rheological and structural properties of chicken myofibrillar protein,” Ultrasonics Sonochemistry, vol. 38, pp. 225–233, Sep. 2017, doi: 10.1016/ j.ultsonch.2017.03.018.

[86]         R. Zhang, L. Xing, D. Kang, L. Zhou, L. Wang, and W. Zhang, “Effects of ultrasound-assisted vacuum tumbling on the oxidation and physicochemical properties of pork myofibrillar proteins,” Ultrasonics Sonochemistry, vol. 74, Jun. 2021, Art. no. 105582, doi: 10.1016/ j.ultsonch.2021.105582.

[87]         D. C. Kang, Y. H. Zou, Y. P. Cheng, L. J. Xing, G. H. Zhou, and W. G. Zhang, “Effects of power ultrasound on oxidation and structure of beef proteins during curing processing,” Ultrasonics Sonochemistry, vol. 33, pp. 47–53, Nov. 2016, doi: 10.1016/j.ultsonch.2016.04.024.

[88]         H. Liu, H. Zhang, Q. Liu, Q. Chen, and B. Kong, “Solubilization and stable dispersion of myofibrillar proteins in water through the destruction and inhibition of the assembly of filaments using high-intensity ultrasound,” Ultrasonics Sonochemistry, vol. 67, Oct. 2020, Art. no. 105160, doi: 10.1016/j.ultsonch.2020. 105160.

[89]         Z. Li, J. Wang, B. Zheng, and Z. Guo, “Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates,” Ultrasonics Sonochemistry, vol. 65, Jul. 2020, Art. no. 105063, doi: 10.1016/j.ultsonch.2020. 105063.

[90]         I. Arredondo-Parada, W. Torres-Arreola, G. M. Suárez-Jiménez, J. C. Ramírez-Suárez, J. E. Juárez-Onofre, F. Rodríguez-Félix, and E. Marquez-Rios, “Effect of ultrasound on physicochemical and foaming properties of a protein concentrate from giant squid (Dosidicus gigas) mantle,” LWT, vol. 121, Mar. 2020, Art. no. 108954, doi: 10.1016/j.lwt.2019.108954.

[91]         L. Tang and J. Yongsawatdigul, “Physicochemical properties of tilapia (Oreochromis niloticus) actomyosin subjected to high intensity ultrasound in low NaCl concentrations,” Ultrasonics Sonochemistry, vol. 63, May 2020, Art. no. 104922, doi: 10.1016/j.ultsonch.2019. 104922.

[92]         R. Zhang, J. Zhang, L. Zhou, L. Wang, and W. Zhang, “Influence of ultrasound-assisted tumbling on NaCl transport and the quality of pork,” Ultrasonics Sonochemistry, vol. 79, Nov. 2021, Art. no. 105759, doi: 10.1016/j.ultsonch. 2021.105759.

[93]         W. Lin, J. Zhu, Y. Sun, D. Pan, Q. Xia, C. Zhou, J. He, and Y. Dang, “Effects of ultrasonic-assisted marinating on degradation of beef protein and formation of flavor precursors,” Journal of Food Composition and Analysis, vol. 133, Sep. 2024, Art. no. 106407, doi: 10.1016/ j.jfca.2024.106407.

[94]         X. Sun, Y. Yu, A. S. M. Saleh, X. Yang, J. Ma, Z. Gao, W. Li, Z. Wang, and D. Zhang, “Structural changes induced by ultrasound improve the ability of the myofibrillar protein to bind flavor compounds from spices,” Ultrasonics Sonochemistry, vol. 98, Aug. 2023, Art. no. 106510, doi: 10.1016/j.ultsonch.2023. 106510.

[95]         A. Sergeev, N. Shilkina, V. Tarasov, S. Mettu, O. Krasulya, V. Bogush, and E. Yushina, “The effect of ultrasound treatment on the interaction of brine with pork meat proteins,” Ultrasonics Sonochemistry, vol. 61, Mar. 2020, Art. no. 104831, doi: 10.1016/j.ultsonch.2019.104831.

[96]         Y. Sun, L. Ma, Y. Fu, H. Dai, and Y. Zhang, “The improvement of gel and physicochemical properties of porcine myosin under low salt concentrations by pulsed ultrasound treatment and its mechanism,” Food Research International, vol. 141, Mar. 2021, Art. no. 110056, doi: 10.1016/j.foodres.2020.110056.

[97]         G. Xiong, X. Fu, D. Pan, J. Qi, X. Xu, and X. Jiang, “Influence of ultrasound-assisted sodium bicarbonate marination on the curing efficiency of chicken breast meat,” Ultrasonics Sonochemistry, vol. 60, Jan. 2020, Art. no. 104808, doi: 10.1016/j.ultsonch.2019.104808.

[98]         D. Kang, X. Gao, Q. Ge, G. Zhou, and W. Zhang, “Effects of ultrasound on the beef structure and water distribution during curing through protein degradation and modification,” Ultrasonics Sonochemistry, vol. 38, pp. 317–325, Sep. 2017, doi: 10.1016/j.ultsonch.2017. 03.026.

[99]         I. Siró, Cs. Vén, Cs. Balla, G. Jónás, I. Zeke, and L. Friedrich, “Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat,” Journal of Food Engineering, vol. 91, no. 2, pp. 353–362, Mar. 2009, doi: 10.1016/j.jfoodeng. 2008.09.015.

[100]      Y. Zou, H. Yang, M. Zhang, X. Zhang, W. Xu, and D. Wang, “The influence of ultrasound and adenosine 5’-monophosphate marination on tenderness and structure of myofibrillar proteins of beef,” Asian-Australasian Journal of Animal Sciences, vol. 32, no. 10, pp. 1611–1620, Oct. 2019, doi: 10.5713/ajas.18.0780.

[101]      J. Yin, P. Zhang, and Z. Fang, “Methods to improve the quality of low-salt meat products: A meta-analysis,” Food Quality and Safety, vol. 7, Jan. 2023, doi: 10.1093/fqsafe/fyac076.

[102]      M. H. Laub-Ekgreen, B. Martinez-Lopez, S. Frosch, and F. Jessen, “The influence of processing conditions on the weight change of single herring (Clupea herengus) fillets during marinating,” Food Research International, vol. 108, pp. 331–338, Jun. 2018, doi: 10.1016/ j.foodres.2018.03.055.

[103]      Y. Li, T. Feng, J. Sun, L. Guo, B. Wang, M. Huang, X. Xu, J. Yu, and H. Ho, “Physicochemical and microstructural attributes of marinated chicken breast influenced by breathing ultrasonic tumbling,” Ultrasonics Sonochemistry, vol. 64, Jun. 2020, Art. no. 105022, doi: 10.1016/j.ultsonch.2020.105022.

Full Text: PDF

DOI: 10.14416/j.asep.2024.11.006

Refbacks

  • There are currently no refbacks.