Page Header

Valorization of Pea Pods and Faba Bean Hulls as Novel Sources of Polyphenols and Fibers: Various Formulations and their Impact on the Biscuit Quality

Sayed Saad Smuda, Ekram Abd El-Salam, Karima Said Mohamed Hammad

Abstract


This research studied the opportunity to enrich biscuits with pea pods and faba bean hulls (seed coat) powder. Chemical composition, polyphenol content, flavonoid content, and antioxidant activity of pea pod and faba bean hulls powders were investigated. To assess their effect on biscuit color, hardness, and sensory characteristics, these powders separately replaced wheat flour at 2.5, 5, and 10% levels. The resultant composite flours were then utilized to prepare biscuits. In addition, the effects of these powders on Mixolab parameters of the resultant composite flour doughs and their correlation with biscuit hardness and texture were investigated. Total phenolics of pea pods and faba bean hulls ethanolic extracts were 44.66 ± 3.65 and 34.55 ± 0.65 mg GAE/g DW and flavonoid content was 3.68 ± 0.14 and 9.11± 0.88 mg QE/g DW, respectively. The main polyphenolic compounds in faba bean hulls extract were Benzoic acid, Rosmarinic acid and p- Hydroxy benzoic acid while the main compounds in pea pods extract were Resveratrol and Benzoic acid. The faba bean hull extract had higher antioxidant activity against DPPH than the pea pod extract. The hardness of fortified biscuits was not affected by the added powder level, but their color became darker and higher in redness and yellowness. Mixolab parameters of the resultant composite flour doughs were significantly affected by adding powders. Pea pods and faba bean hulls can be used as a source of bioactive constituents in many bakery products.

Keywords



[1]    I. Esparza, N. Jiménez-Moreno, F. Bimbela, C. Ancín-Azpilicueta, and L. M. Gandía, “Fruit and vegetable waste management: Conventional and emerging approaches,” Journal of Environmental Management, vol. 265, 2020, Art. no. 110510, doi: 10.1016/j.jenvm an.2020.110510.

[2]    T. B. de Brito Nogueira, T. P. da Silva, D. de Araújo Luiz, C. J. de Andrade, L. M. de Andrade, M. S. Ferreira, and A. E. Fai, “Fruits and vegetable-processing waste: A case study in two markets at Rio de Janeiro, RJ, Brazil,” Environmental Science and Pollution Research, vol. 27, no. 15, pp. 18530–18540, 2020, doi: 10.1007/s11356-020-08244-y.

[3]    B. E. Ozcan, N. Tetik, and H. S. Aloglu, “Polysaccharides from fruit and vegetable wastes and their food applications: A review,” International Journal of Biological Macromolecules, vol. 276, 2024, Art. no. 134007, doi: 10.1016/j.ijbiomac.2024.134007.

[4]    A. V. Cebin, M. C. Ralet, J. Vigouroux, S. Karača, A. Martinić, D. Komes, and E. Bonnin,Valorisation of walnut shell and pea pod as novel sources for the production of xylooligosaccharides,” Carbohydrate Polymers, vol. 263, 2021, Art. no. 117932, doi: 10.1016/j.carbpol.2021.117932.

[5]    L. Castaldo, L. Izzo, A. Gaspari, S. Lombardi, Y. Rodríguez-Carrasco, A. Narváez, M. Grosso, and A. Ritieni, “Chemical composition of green pea (Pisum Sativum L.) pods extracts and their potential exploitation as ingredients in nutraceutical formulations,” Antioxidants, vol. 11, no. 1, 2022, Art. no. 105, doi: 10.3390/ antiox11010105.

[6]    T. Kumari and S. C. Deka, “Potential health benefits of garden pea seeds and pods: A review,” Legume Science, vol. 3, 2021, Art no. e82, doi: 10.1002/leg3.82.

[7]    I. Turco, G. Ferretti, and T. Bacchetti, “Review of the health benefits of Faba bean (Vicia faba L.) polyphenols,” Journal of Food & Nutrition Research, vol. 55, no. 4, pp. 283–293, 2016.

[8]    A. Troszyńska and E. Ciska, “Phenolic compounds of seed coats of white and coloured varieties of pea (Pisum sativum L.) and their total antioxidant activity,” Czech Journal of Food Sciences, vol. 20, no. 1, pp. 15–22, 2002.

[9]    I. Mateos-Aparicio, A. Redondo-Cuenca, and M. J. Villanueva-Suárez, “Isolation and characterization of cell wall polysaccharides from legume by-products: Okara (soymilk residue), pea pod and broad bean pod,” Food Chemistry, vol. 122, pp. 339–345, 2010.

[10] E. Hanan, S. G. Rudra, V. R. Sagar, and V. Sharma, “Utilization of pea pod powder for formulation of instant pea soup powder,” Journal of Food Processing and Preservation, vol. 44, 2020, Art. no. e14888, doi: 10.1111/ jfpp.14888.

[11] F. Mejri, H. B. Khoud, L. Njim, T. Baati, S. Selmi, A. Martins, and K. Hosni, “In vitro and in vivo biological properties of pea pods (Pisum sativum L.),” Food Bioscience, vol. 32, 2019, Art. no. 100482, doi: 10.1016/j.fbio.2019.100482.

[12] L. Belghith-Fendri, F. Chaari, K. B. Jeddou, F. Kallel, F. Bouaziz, C. B. Helbert, L. Abdelkefi-Mesrati, S. Ellouz-Chaabouni, and D. Ghribi-Aydi, “Identification of polysaccharides extracted from pea pod by-products and evaluation of their biological and functional properties,” International journal of biological macromolecules, vol. 116, pp. 947–954, 2018, doi: 10.1016/j.ijbiomac.2018.05.095

[13] T. Varzakas, G. Zakynthinos, and F. Verpoort, “Plant food residues as a source of nutraceuticals and functional foods,” Foods, vol. 5, no. 4, 2016, Art. no. 88, doi: 10.3390/foods5040088

[14] A. Gnanasambandam, J. Paull, A. Torres, S. Kaur, T. Leonforte, H. Li, X. Zong, T. Yang, and M. Materne, “Impact of molecular technologies on faba bean (Vicia faba L.) breeding strategies,” Agronomy, vol. 2, no. 3, pp. 132–166, 2012, doi: 10.3390/agronomy2030132.

 [15] A. Patras, B. D. Oomah, and E. Gallagher, “By-product utilization,” in Pulse Foods. Processing, Quality and Nutraceutical Applications, B. K. Tiwari, A. Gowen, and B. McKenna, Eds. San Diego: Elsevier Science & Technology, pp. 325–362, 2014.

 [16] S. Boudjou, B. D. Oomah, F. Zaidi, and F. Hosseinian, “Phenolics content and antioxidant and anti-inflammatory activities of legume fractions,” Food Chemistry, vol. 138, no. 2–3, pp. 1543–1550, 2013, doi: 10. 1016/j. food chem. 2012. 11. 108.

[17] L. M. M. Krenz, S. Grebenteuch, K. Zocher, S. Rohn, and D. Pleissner, “Valorization of faba bean (Vicia faba) by-products,” Biomass Conversion and Biorefinery, vol. 14, pp. 26663–26680, 2024, doi: 10.1007/s13399-023-03779-9.

[18] Z. Hashemi, and M. A. Ebrahimzadeh, “Evaluation of three methods for the extraction of antioxidants from Vicia faba L. bean and hulls,” Latin American Applied Research, vol. 44, pp. 203–208, 2014, doi: 10.52292/j.laar.2014.442.

[19] M. Korish, “Faba bean hulls as a potential source of pectin,” Journal of Food Science and Technology, vol. 52, pp. 6061–6066, 2015, doi: 10.1007/s13197-014-1688-9.

[20] B. K. Pooja, S. Sethi, R. Bhardwaj, A. Joshi, A. Bhowmik, and M. Grover, “Investigation of physicochemical quality and textural attributes of muffins incorporated with pea pod powder as a source of dietary fiber and protein,” Journal of Food Processing and Preservation, vol. 46, 2022, Art. no. e16884, doi: 10.1111/jfpp.16884.

[21] E. Kaya, N. Y. Tuncel, and N. B. Tuncel, “Utilization of lentil, pea, and faba bean hulls in Turkish noodle production,” Journal Food Science and Technology, vol. 55, pp. 1734–1745, 2018, doi: 10.1007/s13197-018-3086-1.

[22] D. Daliani, S. Stott, A. Fiore, and S. Cottin, “The effect of the enrichment of bread with fibres from fava bean husk by-products on postprandial satiety response and palatability,” Proceedings of the Nutrition Society, vol. 78, no. OCE2, 2019, Art. no. E53, doi: 10.1017/S002966511900079X.

[23] E. M. Elsebaie, A. Elmahdy, E. S. El-Gezawy, M. R. Badr, G. A.  Asker, A. M. El-Gawish, and R. Y. Essa, “Effects of faba bean hull nanoparticles on physical properties, protein and lipid oxidation, colour degradation, and microbiological stability of burgers under refrigerated storage,” Antioxidants, vol. 11, no. 5, 2022, Art. no. 938, doi: 10.3390/antiox11050938.

[24] AOAC International, Official Methods of Analysis of the Association of Analytical Chemists International, 18th ed. Gaithersburg, MD: The Association of Official Analytical Chemists, 2005.

[25] K. S. M. Hammad, M. M. Elkharsa, M. M. A. El-Nikeety, and S. A. S.  Hallabo, “Retarding sunflower oil oxidation during the deep-fat frying of potato chips using micro-encapsulated Convolvulus arvensis Linn leaf phenolic extract,” Grasas Aceites, vol. 74, no. 4, 2024, Art. no. e525, doi: 10.3989/gya.1105222.

[26] V. L. Singleton, R. Orthofer, and R. M. Lamuela-Raventós, “Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent,” in Methods in Enzymology, L. Packer, Ed. San Diego: Academic press, pp. 152–178, 1999. 

[27] A. S. N. Formagio, C. R. F. Volobuff, M. Santiago, C. A. L. Cardoso, M. C. Vieira, and Z. V. Pereira, “Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts,” Antioxidants, vol. 3, no. 4, pp. 745–757, 2014, doi: 10.3390/antio x3040745.

[28] M. S. Blois, “Antioxidant determinations by the use of a stable free radical,” Nature, vol. 181,    no. 4617, pp. 1199–1200, 1958, doi: 10.1038/ 1811199a0.

[29] G. C. Yen and H. Y. Chen, “Antioxidant activity of various tea extracts in relation to their antimutagenicity,” Journal of Agricultural and Food Chemistry, vol. 43, no. 1, pp. 27–32, 1995, doi: 10.1021/jf00049a007.

[30] A. M. El-Roby, K. S. M. Hammad, and S. M. Galal, “Enhancing oxidative stability of sunflower oil with sesame (Sesamum Indicum) coat ultrasonic extract rich in polyphenols,” Journal of Food Processing and Preservation, vol. 44, no. 8, 2020, Art. no. e14564, doi: 10.1111/jfpp.14564.

[31] A. K. Ronoh, C. A. Serrem, S. B. Tumwebaze, and G. M. Were, “Descriptive and rapid sensory profiling of wheat and wheat-sorghum biscuits fortified with longhorn grasshopper (Ruspolia differens) powder,” Applied Food Research, vol. 4, no. 2, 2024, Art. no. 100504, doi: 10.1016/ j.afres.2024.100504.

[32] Y. I. Sallam, E. A. Abd El-Salam, and A. G. Abaza, “Green pea waste flour as a wheat flour partial replacer in pound cake: Batter rheology behavior and cake quality properties,” Acta Scientiarum Polonorum Technologia Alimentaria, vol. 20, no. 1, pp. 67–78, 2021, doi: 10.17306/ J.AFS.2021.0838.

[33] N. Chaieb, J. L. Gonzalez, M. Lopez-Mesas, M. Bouslama, and M. Valiente, “Polyphenols content and antioxidant capacity of thirteen faba bean (Vicia faba L.) genotypes cultivated in Tunisia,” Food Research International, vol. 44, no. 4, pp. 970–977, 2011, doi: 10.1016/j.foodres. 2011.02.026.

[34] O. A. Bello, O. Ayanda, O. S. Aworunse, B. Olukanmi, M. O. Soladoye, E. B. Esan, and O. Obembe, “Solanecio biafrae: An underutilized nutraceutically-important african indigenous vegetable,” Pharmacognosy Reviews, vol. 12, no. 23, pp. 128–132, 2018, doi: 10.4103/phrev. phrev_43_17

[35] N. Ouis, and A. Hariri, “Biological Valorization of the Pod of Pea Pisum sativum L,” Asian Journal of Dairy and Food Research, vol. 42,    no. 1, pp. 96–102, 2023, doi: 10.18805/ajdfr.DR-227. 

[36] L. B. Fendri, F. Châari, F. Kallel, M. Koubaa, S. Zouari‐Ellouzi, I. Kacem, S. E. Châabouni, and D. Ghribi-Aydi, “Antioxidant and antimicrobial activities of polyphenols extracted from pea and broad bean pods wastes,” Journal of Food Measurement and Characterization, vol. 16, no. 6, pp. 4822–4832, 2022, doi: 10.1007/s11694-022-01547-3.

[37] L. Chen and U. L. Opara, “Texture measurement approaches in fresh and processed foods—A review,” Food Research International, vol. 51, no. 2, pp. 823–835, 2013, doi: 10.1016/j.foodres. 2013.01.046.

[38] S. Chuechomsuk, N. Bunchom, S. Korkerd, M. S. Kalhoro, B. Thumthanaruk, V. Rungsardthong, and B. Lamsal, “Product development of nutritious rice based gluten-free snacks from different formulation of rice varieties by extrusion and their physical, physicochemical and sensory evaluation,” Applied Science and Engineering Progress, vol. 17, no. 3, 2024, Art. no. 7397, doi: 10.14416/ j.asep.2024.06.009.

[39] S. Chockchaisawasdee, M. C. Mendoza, C. A. Beecroft, A. C. Kerr, C. E. Stathopoulos, and A. Fiore, “Development of a gluten free bread enriched with faba bean husk as a fibre supplement,” LWT, vol. 173, 2023, Art. no. 114362, doi: 10.1016/j.lwt.2022.114362.

[40] K. Kahraman, O. Sakıyan, S. Ozturk, H. Koksel, G. Sumnu, and A. Dubat, “Utilization of Mixolab® to predict the suitability of flours in terms of cake quality,” European Food Research and Technology, vol. 227, no. 2, pp. 565–570, 2008,  doi: 10.1007/s00217-007-0757-y.

[41] Y. Karaduman, A. Akın, S. Belen, A. C. Sönmez, R. Dayıoğlu, and H. O. Bayramoğlu, “Evaluation of soft winter wheat for soft-hard dough biscuit quality,” Journal of Cereal Science, vol. 102, 2021, Art. no. 103362. doi: 10.1016/j.jcs.2021. 103362

[42] A. de C. Nogueira, E. V. de Aguiar, V. D. Capriles, and C. J. Steel, “Correlations among SRC, Mixolab®, process, and technological parameters of protein-enriched biscuits” Cereal Chemistry, vol. 98, no. 3, pp. 716–728, 2021, doi: 10.1002/cche.10415.

[43] S. Yağcı, “Rheological properties and biscuit production from flour blends prepared from cereal based by-products,” Harran Tarım ve Gıda Bilimleri Dergisi, vol. 23, no. 2, pp. 142–149, 2019, doi: 10.29050/harranziraat.410059.

[44] V. F. Rasper, and C. E. Walker, “Quality evaluation of cereals and cereal products” in Handbook of Cereal Science and Technology, Revised and Expanded, K. Kulp and J. G. Ponte, Ed. New York: Marcel Dekker, Inc., pp. 505–537, 2000.

[45] Y. Zhang, R. Hu, M. Tilley, K. Siliveru and Y. Li, “Effect of pulse type and substitution level on dough rheology and bread quality of whole wheat-based composite flours,” Processes, vol. 9, no. 9, 2021, Art. no. 1687, doi: 10.3390/ pr9091687.

Full Text: PDF

DOI: 10.14416/j.asep.2024.12.005

Refbacks

  • There are currently no refbacks.