Biomechanical Simulation and Comparison of Scepter Plate and PHILOS Systems for Greater Tuberosity Humerus Fracture Fixation
Abstract
Keywords
[1] C. M. Court-Brown, A. Garg, and M. M. McQueen, “The epidemiology of proximal humeral fractures,” Acta Orthopaedica Scandinavica, vol. 72, no. 4, pp. 365–371, 2001.
[2] C. M. Robinson, A. Akhtar, M. Mitchell, and C. Beavis, “Complex proximal humeral fractures in adults - A systematic review of management,” Injury, vol. 42, no. 4, pp. 347–358, 2011.
[3] F. Brunner, C. Sommer, C. Bahrs, R. Heuwinkel, C. Hafner, P. Rillmann, G. Kohut, A. Ekelund, M. Muller, and L. Audigé, “Open reduction and internal fixation of proximal humerus fractures using a proximal humeral locked plate: A prospective multicenter analysis,” Journal of Orthopaedic Trauma, vol. 23, no. 3, pp. 163–172, 2009.
[4] M. Dominic, W. Markus, G. Boyko, N. Stefaan, and V. Peter, “Computational optimisation of screw orientations for improved locking plate fixation of proximal humerus fractures,” Journal of Orthopaedic Translation, vol. 25, pp. 96–104, 2020.
[5] C. C. Wu, W. J. Chen, C. I. Tai, K. Y. Hsu, P. H. Wang, and C. F. Chen, “Treatment of displaced greater tuberosity fractures of the humerus with locking plates,” Journal of Trauma, vol. 68, no. 6, pp. 1411–1416, 2001.
[6] G. Brais, J. Ménard, J. Mutch, G. Y. Laflamme, Y. Petit, and D. M. Rouleau, “Transosseous braided-tape and double-row fixations are better than tension band for avulsion-type greater tuberosity fractures,” Shoulder and Elbow, vol. 12, no. 3, pp. 174–181, 2020.
[7] D. R. Shukla, S. McAnany, C. Pean, S. Overley, A. Lovy, and B. O. Parsons, “The results of tension band rotator cuff suture fixation of locked plating of displaced proximal humerus fractures,” Injury, vol. 48, no. 2, pp. 474–480, 2017.
[8] H. Kim, Y. G. Chung, J. S. Jang, Y. Kim, S. B. Park, and H. A. Song, “Why locking plates for the proximal humerus do not fit well,” Archives of Orthopaedic and Trauma Surgery, vol. 142, no. 2, pp. 219–226, 2022.
[9] B. Gueorguiev, F. Dyrna, S. Schleifenbaum, O. Pieske, C. A. Müller, L. Löhrer, M. Windolf, and M. Knobe, “Biomechanical evaluation of locking plate constructs for the fixation of proximal humerus fractures,” Injury, vol. 45, no. 4, pp. 744–749, 2014.
[10] L. Q. Zeng, Y. F. Chen, Y. W. Jiang, L. L. Zeng, X. G. Miao, and W. G. Liang, “A new low-profile anatomic locking plate for fixation of comminuted, displaced greater tuberosity fractures of the proximal humerus,” Journal of Shoulder and Elbow Surgery, vol. 30, no. 6, pp. 1402–1409, 2021.
[11] D. M. Rouleau, J. Mutch, and G. Y. Laflamme, “Surgical treatment of displaced greater tuberosity fractures of the humerus,” Journal of the American Academy of Orthopaedic Surgeons, vol. 24, no. 5, pp. 324–330, 2016.
[12] Q. Sun, W. Ge, G. Li, J. Z. Wu, G. Lu, and R. Li, “Plate fixation versus arthroscopic-assisted plate fixation for isolated medium-sized fractures of the greater tuberosity: A retrospective study,” Orthopaedic Surgery, vol. 10, no. 2, pp. 124–131, 2018.
[13] D. R. Kim, Y. M. Noh, and S. Y. Lee, “Arthroscopic reduction and suture bridge fixation of a large displaced greater tuberosity fracture of the humerus,” Arthroscopy Techniques, vol. 8, no. 9, pp. e975–e985, 2019.
[14] D. Popp, V. Schöffl, and W. Strecker, “Osteosynthesis of displaced fractures of the greater tuberosity with the Bamberg plate,” Der Unfallchirurg, vol. 112, no. 6, pp. 550–554, 2009.
[15] P. Platzer, G. Oberleitner, F. Kutscha-Lissberg, T. Wieland, V. Vecsei, and C. Gaebler, “Displaced fractures of the greater tuberosity: A comparison of operative and nonoperative treatment,” Journal of Trauma, vol. 69, no. 4, pp. 1040–1044, 2010.
[16] V. Braunstein, W. Plitz, O. J. Muensterer, W. Mutschler, and S. Hinterwimmer, “Operative treatment of greater tuberosity fractures of the humerus - A biomechanical analysis,” Clinical Biomechanics, vol. 24, no. 8, pp. 675–680, 2009.
[17] Z. T. Kokkalis, E. Papanikos, E. Bavelou, G. Togias, and S. Sioutis, A. F. Mavrogenis, A. Panagopoulos, “Arthroscopic reduction and fixation of greater tuberosity fractures of the humerus,” European Journal of Orthopaedic Surgery and Traumatology, vol. 31, no. 6, pp. 1055–1060, 2021.
[18] W. Liao, H. Zhang, Z. Li, and J. Li, “Is arthroscopic technique superior to open reduction internal fixation in the treatment of isolated displaced greater tuberosity fractures,” Clinical Orthopaedics and Related Research, vol. 474, no. 5, pp. 1269–1279, 2016.
[19] S. E. Park, J. J. Jeong, K. Panchal, J. Y. Lee, H. K. Min, and J. H. Ji, “Arthroscopic-assisted plate fixation for displaced large-sized comminuted greater tuberosity fractures of proximal humerus: A novel surgical technique,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 24, no. 12, pp. 3892–3898, 2016.
[20] S. Phongthanapanich and P. Dechaumphai, “Nodeless variable finite element method for stress analysis using flux-based formulation,” Journal of Mechanical Science and Technology, vol. 22, no. 4, pp. 639–646, 2008.
[21] P. Soranansri, T. Rojhirunsakool, N. Nithipratheep, C. Ngaouwnthong, K. Boonpradit, C. Treevisootand, W. Srithong, P. Chuchuay, and K. Sirivedin, “Hot forging process design and initial billet size optimization for manufacturing of the talar body prosthesis by finite element modeling,” Applied Science and Engineering Progress, vol. 15, no. 1, pp. 1–10, 2022.
[22] S. Phongthanapanich, K. Potjananapasiri, and P. Dechaumphai, “J-integral calculation by domain integral technique using adaptive finite element method,” Structural Engineering and Mechanics, vol. 28, no. 4, pp. 461–477, 2008.
[23] M. Hearunyakij and S. Phongthanapanich, “An efficient adaptive finite element method based on EBE-PCG iterative solver for LEFM analysis,” Structural Engineering and Mechanics, vol. 83, no. 3, pp. 353–361, 2022.
[24] P. Soranansri, T. Rojhirunsakool, N. Nithipratheep, C. Ngaouwnthong, K. Boonpradit, C. Treevisootand, W. Srithong, P. Chuchuay, and K. Sirivedin, “Hot forging process design and initial billet size optimization for manufacturing of the talar body prosthesis by finite element modeling,” Applied Science and Engineering Progress, vol. 15, no. 1, pp. 1–10, 2022.
[25] M. Dominic, B. Satish, O. Georg, F. Jamed, W. Markus, G. Boyko, and V. Peter, “Comparison of optimal screw configurations in two locking plate systems for proximal humerus fixation – a finite element analysis study,” Clinical Biomechanics, vol. 70, pp. 105097–105105, 2020.
[26] L. Yang, Z. Ziyan, Q. Ji, S. Qian, Z. Zian, and P. Chengdong, “Finite element analysis and biomechanical study of sandwich fixation in the treatment of elderly proximal humerous fractures,” Frontiers in Bioengineering and Biotechnology, vol. 10, pp. 1425643–1425652, 2024.
[27] Y. K. Zhang, H. W. Wei, K. P. Lin, W. C. Chen, C. L. Tsai, and K. J. Lin, “Biomechanical effect of the configuration of screw hole style on locking plate fixation in proximal humerus fracture with a simulated gap: A finite element analysis,” Injury, vol. 47, no. 6, pp. 1191–1195, 2016.
[28] Z. Radovan, B. Pawel, and H. S. Emil, “Biomechanical design optimization of proximal humerous locked plates: A review,” Injury, vol. 55, pp. 111247–111255, 2024.
[29] L. R. Huff, P. A. Taylor, J. Jani, J. R. Owen, J. S. Wayne, and N. D. Boardman, “Proximal humeral fracture fixation: A biomechanical comparison of two constructs,” Journal of Shoulder and Elbow Surgery, vol. 22, pp. 129–136, 2013.
[30] P. E. Saunders, P. Castaneda, R. Walker, and M. D. McKee, “Biomechanical comparison of tuberosity-based proximal humeral locking plate compared to standard proximal humeral locking plate in varus cantilever bending,” Injury, vol. 53, pp. 3650–3654, 2022.
[31] R. Walker, P. Castaneda, J. G. Putnam, E. H. Schemitsch, and M. D. McKee, “A biomechanical study of tuberosity-based locked plate fixation compared with standard proximal humeral locking plate fixation for 3-part proximal humeral fractures,” Journal of Orthopaedic Trauma, vol. 34, no. 5, pp. 258–263, 2020.
[32] S. Mehta, M. Chin, J. Sanville, S. Namdari, and M. W. Hast, “Calcar screw position in proximal humerus fracture fixation: Don't miss high!,” Injury, vol. 49, no. 3, pp. 624–629, 2018.
[33] J. Xu, S. Zhan, M. Ling, D. Jiang, H. Hu, and J. Sheng, “How can medial support for proximal humeral fractures be achieved when positioning of regular calcar screws is challenging? Slotting and off-axis fixation strategies,” Journal of Shoulder and Elbow Surgery, vol. 31, no. 3, pp. 573–580, 2022.
[34] H. Kim, M. J. Shin, E. Kholinne, J. Seo, D. Ahn, and J. W. Kim, “How many proximal screws are needed for a stable proximal humerus fracture fixation?,” Geriatric Orthopaedic Surgery and Rehabilitation, vol. 12, pp. 1–8, 2021.
[35] D. Mischler, J. F. Schader, J. Dauwe, L. Tenisch, B. Gueorguiev, and M. Windolf, “Locking plates with computationally enhanced screw trajectories provide superior biomechanical fixation stability of complex proximal humerus fractures,” Frontiers in Bioengineering and Biotechnology, vol. 10, pp. 919721–919730, 2022.
[36] J. F. Schader, D. Mischler, J. Dauwe, R. G. Richards, B. Gueorguiev, and P. Varga, “One size may not fit all: Patient-specific computational optimization of locking plates for improved proximal humerus fracture fixation,” Journal of Shoulder and Elbow Surgery, vol. 31, pp. 192–200, 2022.
[37] J. W. A. Fletcher, M. Windolf, L. Grünwald, R. G. Richards, B. Gueorguiev, and P. Varga, “The influence of screw length on predicted cut-out failures for proximal humeral fracture fixations predicted by finite element simulations,” Archives of Orthopaedic and Trauma Surgery, vol. 139, no. 8, pp. 1069–1074, 2019.
[38] B. Schliemann, N. Risse, A. Frank, M. Müller, P. Michel, and M. J. Raschke, “Screws with larger core diameter and lower thread pitch increase the stability of locked plating in osteoporotic proximal humeral fractures,” Clinical Biomechanics, vol. 63, pp. 52–58, 2019.
[39] P. Clavert, M. Zerah, J. Krier, P. Mille, J. F. Kempf, and J. L. Kahn, “Finite element analysis of the strain distribution in the humeral head tubercles during abduction: Comparison of young and osteoporotic bone,” Orthopaedics and Traumatology: Surgery and Research, vol. 97, no. 3, pp. 262–266, 2011.
[40] F. Hamandi, R. Laughlin, and T. Goswami, “Failure analysis of PHILOS plate construct used for pantalar arthrodesis paper II—screws and FEM simulations,” Metals, vol. 8, no. 12, pp. 999–1010, 2018.
[41] A. A. Qwam, A. Geeslin, J. King, and P. Gustafson, “A finite element model of a surgical knot,” Journal of Medical Devices, vol. 11, no. 4, pp. 041009–041015, 2017.
[42] M. Mantovani, A. Pellegrini, P. Garofalo, and P. Baudi, “A 3D finite element model for geometrical and mechanical comparison of different supraspinatus repair techniques,” Journal of Shoulder and Elbow Surgery, vol. 25, no. 4, pp. 557–563, 2016.
[43] A. S. Curtis, K. M. Burbank, J. J. Tierney, A. D. Scheller, and A. R. Curran, “The insertional footprint of the rotator cuff: An anatomic study,” Arthroscopy, vol. 22, no. 6, pp. 524–528, 2006.
[44] E. A. White, M. R. Skalski, D. B. Patel, and J. S. Gross, A. Tomasian, and N. Heckmann, “Isolated greater tuberosity fractures of the proximal humerus: anatomy, injury patterns, multimodality imaging, and approach to management,” Emergency Radiology, vol. 24, no. 2, pp. 117–123, 2017.
[45] I. Mendoza-Muñoz, A. Gonzalez-Angeles, M. Gil-Samaniego-Ramos, R. L-Avitia, and C. González-Toxqui, “Evaluation of significant effects on locking plates design for a 2-part fracture of the surgical neck of the humerus using finite element and statistical analysis,” Biomedical Research, vol. 29, no. 10, pp. 2122–2133, 2018.
[46] P. Pisitwattanaporn, N. Saengpetch, S. Thamyongkit, T. Wanitchanont, P. Sa-Ngasoongsong, and P. Aroonjarattham, “Additional cuff suture provides mechanical advantage for fixation of split-type greater tuberosity fracture of humerus,” Injury, vol. 53, no. 12, pp. 4033–4037, 2022.
[47] A. Kaisidis, P. G. Pantos, D. Bochlos, and H. Lindner, “Biomechanical analysis of the fixation strength of a novel plate for greater tuberosity fractures,” Journal of Shoulder and Elbow Surgery, vol. 30, no. 6, pp. 1402–1409, 2021.
[48] S. S. Burkhart, “A stepwise approach to arthroscopic rotator cuff repair based on biomechanical principles,” Arthroscopy, vol. 16, no. 3, pp. 82–90, 2000.
[49] C. Quental, J. Reis, J. Folgado, J. Monteiro, and M. Sarmento, “Comparison of 3 supraspinatus tendon repair techniques - A 3D computational finite element analysis,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 23, no. 16, pp. 1387–1394, 2020.
[50] D. S. Elliott, K. J. Newman, D. P. Forward, D. M. Hahn, B. Ollivere, K. Kojima, R. Handley, N. D. Rossiter, J. J. Wixted, R. M. Smith, and C. G. Moran, “A unified theory of bone healing and nonunion: BHN theory,” Bone and Joint Journal, vol. 98-B, no. 7, pp. 884–891, 2016.
[51] L. Shen, Z. Wei, W. Qiu-gen, and C. Yunfeng, “Establishment of a three-dimensional finite element model and biomechanical analysis of three different internal fixation methods for humeral greater tuberosity fracture,” International Journal of Clinical and Experimental Medicine, vol. 11, no. 4, pp. 3245–3254, 2018.DOI: 10.14416/j.asep.2025.03.005
Refbacks
- There are currently no refbacks.