Page Header

Enhancement of β-Cryptoxanthin Production in Three Different Green Microalgae Species Using an Innovative Red LED Wavelength Shift Approach

Sirawit Chuechomsuk, Benjawan Thumthanaruk, Savitri Vatanyoopaisarn, Vilai Rungsardthong, Watcharee Kunyalung, Sonia Mohamadnia, Irini Angelidaki

Abstract


β-Cryptoxanthin is a natural carotenoid pigment with several important functions for human health, including antioxidant, provitamin A, and anticancer activities. Microalgae could be a potential source to produce β-cryptoxanthin instead of its production from plants. In this research study, the effect of the red light-emitting diode (LED) at wavelengths 620 to 750 nm and different intensities of 50, 100, 200, and 300 µmol/m2.s was evaluated for the second phase of the two-stage microalgae cultivation with three microalgae species: Scenedesmus obliquus, Coelastrum morus, and Chlorococcum sp. The results were focused on biomass production, β-cryptoxanthin, and total carotenoid contents to select the microalgae strain that could produce a high amount of β-cryptoxanthin under optimized light conditions. Red LED with an intensity of 200 µmol/m2.s resulted in the biomass production of 5.23 ± 0.27 g/L, 5.72 ± 0.25 g/L, and 5.70 ± 0.17 g/L in three microalgae species of Scenedesmus obliquus, Coelastrum morus, and Chlorococcum sp., respectively. In addition, when compared with 50 µmol/m2.s red LED, the highest β-cryptoxanthin content was obtained from the condition of the red LED at 100 µmol/m2.s for S. obliquus (229.22 ± 5.11 µg/g DCW) and 200 µmol/m2.s for C. morus (311.01 ± 4.75 µg/g DCW) and Chlorococcum sp. (383.68 ± 6.63 µg/g DCW). The applied approach to the proper manipulation of LED color, wavelengths, and intensities in this study will enable the improvement of biomass and enhance β-cryptoxanthin production in three tested microalgae species.

Keywords



[1]    A. Çelekli, B. Özbal, and H. Bozkurt, “Challenges in functional food products with the incorporation of some microalgae,” Foods, vol. 13, p. 725, Feb. 2024, doi: 10.3390/foods 13050725.

[2]    C. Aflalo, Y. Meshulam, A. Zarka, and S. Boussiba, “On the relative efficiency of two vs. one‐stage production of astaxanthin by the green alga Haematococcus pluvialis,” Biotechnology and Bioengineering, vol. 98, pp. 300–305, Feb. 2007, doi: 10.1002/bit.21391.

[3]    P. P. Lamers, C. C. van de Laak, P. S. Kaasenbrood, J. Lorier, M. Janssen, R. C. De Vos, R. J. Bino, and R. H. Wijffels, “Carotenoid and fatty acid metabolism in light‐Stressed Dunaliella salina,” Biotechnology and Bioengineering, vol. 106, pp. 638–648, Jul. 2010, doi: 10.1002/bit.22725.

[4]    Y. Xie, S. H. Ho, C. N. N. Chen, C. Y. Chen, I. S. Ng, K. J. Jing, J. S. Chang, and Y. Lu, “Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: Effects of nitrate concentration, light intensity and fed-batch operation,” Bioresource Technology, vol. 144, pp. 435–444, Sep. 2013, doi: 10.1016/ j.biortech.2013.06.064.

[5]    L. Wolf, T. Cummings, K. Müller, M. Reppke, M. Volkmar, and D. Weuster‐Botz, “Production of β‐carotene with Dunaliella salina CCAP19/18 at physically simulated outdoor conditions,” Engineering in Life Sciences, vol. 21, pp.115–125, Mar. 2021, doi: 10.1002/elsc.202000044.

[6]    P. Sirohi, H. Verma, S. K. Singh, V. K. Singh, J. Pandey, S. Khusharia, D. Kumar, Kaushalendra, P. Teotia, and A. Kumar, “Microalgal carotenoids: Therapeutic application and latest approaches to enhance production,” Current Issues in Molecular Biology, vol. 44, pp. 6257–6279, Dec. 2022, doi: 10.3390/cimb44120427.

[7]    M. Kholany, J. A. Coutinho, and S. P. Ventura, “Carotenoid production from microalgae: The portuguese scenario,” Molecules, vol. 27, p. 2540, Apr. 2022, doi: 10.3390/molecules27082540.

[8]    A. Bunea, C. Socaciu, and A. Pintea, “Xanthophyll esters in fruits and vegetables,” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 42, pp. 310–324, Dec. 2014, doi: 10.15835/nbha.42.2.9700.

[9]    K. Takayanagi and K. Mukai, “Beta-cryptoxanthin, a novel carotenoid derived from Satsuma Mandarin prevents abdominal obesity,” Nutrition in the Prevention and Treatment of Abdominal Obesity, pp. 381–399, Mar. 2014, doi: 10.1016/B978-0-12-407869-7.00034-9.

[10]  R. K. Saini, S. H. Nile, and S. W. Park, “Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities,” Food Research International, vol. 76, pp. 735–750, Oct. 2015,  doi: 10.1016/j.foodres.2015.07.047.

[11]  C. H. Zhu, E. R. Gertz, Y. Cai, and B. J. Burri, “Consumption of canned citrus fruit meals increases human plasma β-cryptoxanthin concentration, whereas lycopene and β-carotene concentrations did not change in healthy adults,” Nutrition Research, vol. 36, pp. 679–688, Jul. 2016, doi: 10.1016/j.nutres.2016.03.005.

[12]  M. Nakamura and M. Sugiura, “Health effects of β-cryptoxanthin and β-cryptoxanthin-enriched satsuma Mandarin juice,” Nutrients in Beverages, vol. 12, pp. 393–417, Jan. 2019, doi: 10.1016/ B978-0-12-816842-4.00011-3.

[13]  J. Montonen, P. Knekt, R. I. T. V. A. Jarvinen, and A. Reunanen, “Dietary antioxidant intake and risk of type 2 diabetes,” Diabetes Care, vol. 27, pp. 362–366, Feb. 2004, doi: 10.2337/diacare. 27.2.362.

[14]  M. Sugiura, “β-Cryptoxanthin and the risk for lifestyle-related disease: Findings from recent nutritional epidemiologic studies,” Journal of the Pharmaceutical Society of Japan, vol. 135, pp. 67–76, Jan. 2015, doi: 10.1248/yakushi.14-00208-5.

[15]  B. Yilmaz, K. Sahin, H. Bilen, I. H. Bahcecioglu, B. Bilir, S. Ashraf, K. J. Halazun, and O. Kucuk, “Carotenoids and non-alcoholic fatty liver disease,” Hepatobiliary Surgery and Nutrition, vol. 4, p. 161, Jun. 2015, doi: 10.3978%2Fj.issn.2304-3881.2015.01.11.

[16]  A. R. Iskandar, B. Miao, X. Li, K. Q. Hu, C. Liu, and X. D. Wang, “β-Cryptoxanthin reduced lung tumor multiplicity and inhibited lung cancer cell motility by downregulating nicotinic acetylcholine receptor α7 signaling β-cryptoxanthin inhibits lung cancer,” Cancer Prevention Research, vol. 9, pp. 875–886, Nov. 2016, doi: 10.1158/1940-6207.CAPR-16-0161.

[17]  M. Nakamura, M. Sugiura, K. Ogawa, Y. Ikoma, and M. Yano, “Serum β-cryptoxanthin and β-carotene derived from Satsuma mandarin and brachial–ankle pulse wave velocity: The Mikkabi cohort study,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 26, pp. 808–814, Sep. 2016, doi: 10.1016/j.numecd.2016.04.00.

[18]  M. Sugiura, M. Nakamura, K. Ogawa, Y. Ikoma, and M. Yano, “High vitamin C intake with high serum β-cryptoxanthin associated with lower risk for osteoporosis in post-menopausal Japanese female subjects: Mikkabi cohort study,” Journal of Nutritional Science and Vitaminology, vol. 62, pp. 185–191, Jan. 2016, doi: 10.3177/jnsv.62.185.

[19]  G. Park, T. Horie, K. Fukasawa, K. Ozaki, Y. Onishi, T. Kanayama, T. Iezaki, K. Kaneda, M. Sugiura, and E. Hinoi, “Amelioration of the development of osteoarthritis by daily intake of β-cryptoxanthin,” Biological and Pharmaceutical Bulletin, vol. 40, pp. 1116–1120, Jul. 2017, doi: 10.1248/bpb.b17-00161.

[20]  B. J. Burri, M. R. L. Frano, and C. Zhu, “Absorption, metabolism, and functions of β-cryptoxanthin,” Nutrition Reviews, vol. 74, pp. 69–82, Feb. 2016, doi: 10.1093/nutrit/nuv064.

[21]  Y. Jiao, L. Reuss, and Y. Wang, “β-Cryptoxanthin: Chemistry, occurrence, and potential health benefits,” Current Pharmacology Reports, vol. 5, pp. 20–34, Feb. 2019, doi: 10.1007/s40495-019-00168-7.

[22]  H. H. A. El-Baky, F. K. E. Baz, and G. S. El-Baroty, “Spirulina species as a source of carotenoids and a-tocopherol and its anticarcinoma factors,” Biotechnology, vol. 2, pp. 222–240, Feb. 2003, doi: 10.3923/biotech. 2003.222.240.

[23]  L. D. Patias, A. S. Fernandes, F. C. Petry, A. Z. Mercadante, E. Jacob-Lopes, and L. Q. Zepka, “Carotenoid profile of three microalgae/ cyanobacteria species with peroxyl radical scavenger capacity,” Food Research International, vol. 100, pp. 260–266, Oct. 2017, doi: 10.1016/ j.foodres.2017.06.069.

[24]  X. M. Sun, L. J. Ren, Q. Y. Zhao, X. J. Ji, and H. Huang, “Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation,” Biotechnology for Biofuels, vol. 11, pp. 1–16, Dec. 2018, doi: 10.1186/s13068-018-1275-9.

[25]  S. Tamaki, K. Mochida, and K. Suzuki, “Diverse biosynthetic pathways and protective functions against environmental stress of antioxidants in microalgae,” Plants, vol. 10, p. 1250, Jun. 2021, doi: 10.3390/plants10061250.

[26]  C. Faraloni and G. Torzillo, “Synthesis of antioxidant carotenoids in microalgae in response to physiological stress,” IntechOpen, pp. 143–157, Jun. 2017, doi: 10.5772/67843.

[27]  R. Ma, S. R. Thomas-Hall, E. T. Chua, E. Eltanahy, M. E. Netzel, G. Netzel, Y. Lu, and P. M. Schenk, “LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae,” Bioresource Technology, vol. 252, pp. 118–126, Mar. 2018, doi:  10.1016/j.biortech.2017.12.096.

[28]  J. H. Jung, P. Sirisuk, C. H. Ra, J. M. Kim, G. T. Jeong, and S. K. Kim, “Effects of green LED light and three stresses on biomass and lipid accumulation with two-phase culture of microalgae,” Process Biochemistry, vol. 77, pp. 93–99, Feb. 2019, doi: 10.1016/j.procbio.2018. 11.014.

[29]  G. Ma, L. Zhang, M. Kato, K. Yamawaki, Y. Kiriiwa, M. Yahata, Y. Ikoma, and H. Matsumoto, “Effect of blue and red LED light irradiation on β-cryptoxanthin accumulation in the flavedo of citrus fruits,” Journal of Agricultural and Food Chemistry, vol. 60, pp. 197–201, Jan. 2012, doi: 10.1021/jf203364m.

[30]  M. Rauytanapanit, K. Janchot, P. Kusolkumbot, S. Sirisattha, R. Waditee-Sirisattha, and T. Praneenararat, “Nutrient deprivation-associated changes in green microalga coelastrum sp. TISTR 9501RE enhanced potent antioxidant carotenoids,” Marine Drugs, vol. 17, p. 328, Jun. 2019, doi:  10.3390/md17060328.

[31]  K. Laje, M. Seger, B. Dungan, P. Cooke, J. Polle, and F. O. Holguin, “Phytoene accumulation in the novel microalga Chlorococcum sp. using the pigment synthesis inhibitor fluridone,” Marine Drugs, vol. 17, p. 187, Mar. 2019, doi: 10.3390/ md17030187.

[32]  S. Chuechomsuk, B. Thumthanaruk, W. Kunyalung, S. Mohamadnia, I. Angelidaki, and V. Rungsardthong, “Production of β-cryptoxanthin at different artificial light spectra by three strains of microalgae,” Journal of Current Science and Technology, In progress.

[33]  S. K. Ratha, P. H. Rao, K. Govindaswamy, R. S. Jaswin, R. Lakshmidevi, S. Bhaskar, and S. Chinnasamy, “A rapid and reliable method for estimating microalgal biomass using a moisture analyser,” Journal of Applied Phycology, vol. 28, pp. 1725–1734, Jun. 2016, doi: 10.1007/s10811-015-0731-1.

[34]  F. Mandelli, V. S. Miranda, E. Rodrigues, and A. Z. Mercadante, “Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms,” World Journal of Microbiology and Biotechnology, vol. 28, pp. 1781–1790, Apr. 2012, doi: 10.1007/s11274-011-0993-y.

[35]  L. M. J. de Carvalho, P. B. Gomes, R. L. de Oliveira Godoy, S. Pacheco, P. H. F. do Monte, J. L. V. de Carvalho, M. R. Nutti, A.C.L. Neves, A. C. R. A. Vieira, and S. R. R. Ramos, “Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study,” Food Research International, vol. 42, pp. 337–340, Jul. 2012, doi: 10.1016/j.foodres.2011.07.040.

[36]  J. C. Nzayisenga, X. Farge, S. L. Groll, and A. Sellstedt, “Effects of light intensity on growth and lipid production in microalgae grown in wastewater,” Biotechnology for Biofuels, vol.13, pp. 1–8, Dec. 2020, doi: 10.1186/s13068-019-1646-x.

[37]  E. Erickson, S. Wakao, and K. K. Niyogi, “Light stress and photoprotection in Chlamydomonas reinhardtii,” The Plant Journal, vol. 82, pp. 449–465, May. 2015, doi: 10.1111/tpj.12825.

[38]  H. Raqiba, and G. Sibi, “Light emitting diode (LED) illumination for enhanced growth and cellular composition in three microalgae,” Advances in Microbiology Research, vol. 3, pp. 1–6, Aug. 2019, doi: 10.24966/AMR-694X/100007.

[39]  J. G. Scandalios, “Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses,” Brazilian Journal of Medical and Biological Research, vol. 38, pp. 995–1014, Jul. 2005, doi: 10.1590/S0100-879X2005000700003.

[40]  T. Q. Shi, L. R. Wang, Z. X. Zhang, X. M. Sun, and H. Huang, “Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae,” Frontiers in Bioengineering and Biotechnology, vol. 8, p. 610, Jul. 2020, doi: 10.3389/fbioe.2020.00610.

[41]  S. Takaichi, M. Mochimaru, H. Uchida, A. Murakami, E. Hirose, T. Maoka, T. Tsuchiya, and M. Mimuro, “Opposite chilarity of α-carotene in unusual cyanobacteria with unique chlorophylls, Acaryochloris and Prochlorococcus,” Plant and Cell Physiology, vol. 53, pp. 1881–1888, Nov. 2012, doi: 10.1093/pcp/pcs126.

[42]  Y. Cui, H. Zhang, and S. Lin, “Enhancement of non-photochemical quenching as an adaptive strategy under phosphorus deprivation in the dinoflagellate Karlodinium veneficum,” Frontiers in Microbiology, vol. 8, Mar. 2017, Art. no. 241298, doi: 10.3389/fmicb.2017.00404.

[43]  P. Kuczynska, M. Jemiola-Rzeminska, and K. Strzalka, “Photosynthetic pigments in diatoms,” Marine drugs, vol. 13, pp. 5847–5881, Sep. 2015, doi: 10.3390/md13095847.

[44]  P. Kuczynska, M. Jemiola-Rzeminska, and K. Strzalka, “Characterisation of carotenoids involved in the xanthophyll cycle,” IntechOpen, Jun. 2017, doi: 10.5772/67786.

[45]  L. Dall’Osto, R. Bassi, and A. Ruban, “Photoprotective mechanisms: Carotenoids,” in Advances in Plastid Biology. New York: Springer, 2014, pp. 393–435.

[46]  J. W. R. Chong, K. S. Khoo, G. Y. Yew, W. H. Leong, J. W. Lim, M. K. Lam, Y. C. Ho, H. S. Ng, H. S. H. Munawaroh, and P. L. Show, “Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review,” Bioresource Technology, vol. 342, Dec. 2021, Art. no. 125947, doi: 10.1016/j.biortech.2021.125947.

[47]  C. H. Tan, S. S. Low, W. Y. Cheah, J. Singh, W. S. Chai, S. K. Tiong, and P. L. Show “Futuristic opportunities for pretreatment processes in biofuel production from microalgae,” GCB Bioenergy, vol. 16, Apr. 2024, Art. no. e13136, doi: 10.1111/gcbb.13136.

[48]  S. Uganeeswary, M. K. Lam, R. Hemamalini, J. W. Lim, K. F. Pa’ee, K. Y. T. Len, I. S. Tan, P. L. Show, and K. T. Lee “ Preliminary screening of agri-food waste for potential recovery of microalgae biostimulant,” AIP Conference Proceedings, vol. 3041, Mar. 2024, doi: 10.1063/5.0196834.

Full Text: PDF

DOI: 10.14416/j.asep.2025.03.001

Refbacks

  • There are currently no refbacks.