Page Header

Effects of Pulsed Laser Repetition Rate and Duty Cycle on Heat-Affected Zone Narrowing in Laser Powder Bed Fusion of 316L Stainless Steel

Sukunya Pathompakawant, Pruet Kowitwarangkul, Patiparn Ninpetch, Somboon Otarawanna

Abstract


Laser Powder Bed Fusion (L-PBF) is a type of metal additive manufacturing process. It has attracted increasing interest over the past few decades. L-PBF systems typically use continuous wave (CW) emission. Recently, pulsed wave (PW) emission has been introduced in order to have better control of the heat-affected zone (HAZ) and potentially enhance spatial resolution. Generally, the PW emission involves the laser temporal profile that can be modulated by such as pulse durations, duty cycles, and pulse repetition rates (PRR). Nevertheless, based on a literature survey, the systematic investigation of pulsed wave (PW) emission in the L-PBF process, which changes the laser temporal profile by adjustment of the pulsed laser parameters has scarcely been examined. The determination of suitable pulsed laser parameters needs to be employed in order to achieve these good attributes of PW emission to obtain the final part with high quality. Hence, this work investigates the effects of modifying the pulsed laser parameters on single track formation in AISI 316L pulsed L-PBF using numerical simulation with Flow-3D AM Software. The simulation cases used different pulse durations, duty cycles, and pulse repetition rates (PRR) while the layer thickness, scanning speed and laser power were kept constant. The key results demonstrate that increasing the PRR by four times while maintaining a constant Linear Energy Density (LED) reduced the width of the 700 K isotherm HAZ by 7%, highlighting the role of PRR in minimizing thermal diffusion. Furthermore, increasing the duty cycle while keeping the PRR and pulse period constant resulted in a smoother surface finish, as evidenced by a reduction in surface roughness (Ra) to less than 4 µm, compared to typical Ra values of 5–12 µm in CW L-PBF systems. This change also resulted in a wider HAZ, emphasizing the trade-off between surface finish and thermal diffusion. The findings from this study provide insights for optimizing processing parameters in L-PBF with PW emission, enabling the production of parts with finer geometries and enhanced surface quality.

Keywords



[1]    J. P. Davim, Additive and Subtractive Manufacturing: Emergent Technologies. Berlin, Germany: Walter de Gruyter GmbH, pp. 1–289, 2019.

[2]    S. A. Adekanye, R. M. Mahamood, E. T. Akinlabi, and M. G. Owolabi, “Additive manufacturing: The future of manufacturing,” Materiali in Tehnologije, vol. 51, no. 5, pp. 709–715, 2017, doi: 10.17222/mit.2016.261.

[3]    K. Mumtaz and N. Hopkinson, “Selective laser melting of Inconel 625 using pulse shaping,” Rapid Prototyping Journal, vol. 16, no. 4, pp. 248–257, 2010, doi: 10.1108/13552541011049261.

[4]    J. P. Davim, Lasers in Manufacturing. London, UK: ISTE Ltd and John Wiley & Sons, Inc, 2012, pp. 1–297.

[5]    L. Caprio, A. G. Demir, and B. Previtali, “Influence of pulsed and continuous wave emission on melting efficiency in selective laser melting,” Journal of Materials Processing Technology, vol. 266, pp. 429–441, 2019, doi: 10.1016/j.jmatprotec.2018.11.019.

[6]    V. Laitinen, H. Piili, P. Nyamekye, K. Ullakko, and A. Salminen, “Effect of process parameters on the formation of single track in pulsed laser powder bed fusion,” Procedia Manufacturing, vol. 36, pp. 176–183, 2019, doi: 10.1016/ j.promfg.2019.08.023.

[7]    A. Demir, P. Colombo, and B. Previtali, “From pulsed to continuous wave emission in SLM with contemporary fiber laser sources: Effect of temporal and spatial pulse overlap in part quality,” The International Journal of Advanced Manufacturing Technology, vol. 91, pp. 2701–2714, 2017, doi: 10.1007/s00170-016-9875-5.

[8]    A. B. Kaligar, H. A. Kumar, A. Ali, W. Abuzaid, M. Egilmez, M. Alkhader, F. Abed, and A. S. Alnaser, “Femtosecond laser-based additive manufacturing: Current status and perspectives,” Quantum Beam Science, vol. 6, no. 1, p. 5, 2022, doi: 10.3390/qubs6010005.

[9]    E. Assuncao and S. Williams, “Comparison of continuous wave and pulsed wave laser welding effects,” Optics and Lasers in Engineering, vol. 51, pp. 670–680, 2013, doi: 10.1016/j.optlaseng. 2013.01.007.

[10]  Y. Guo, L. Jia, B. Kong, N. Wang, and H. Zhang, “Single track and single layer formation in selective laser melting of niobium solid solution alloy,” Chinese Journal of Aeronautics, vol. 31, no. 4, pp. 860–866, 2018, doi: 10.1016/j.cja. 2017.08.019.

[11] L. Wang, J. Han, and H. Ding, “Effects of different substrates on the formability and densification behaviors of cemented carbide processed by laser powder bed fusion,” Journal of Materials Processing Technology, vol. 252, pp. 88–96, 2018, doi: 10.1016/j.jmatprotec. 2017.09.026.

[12] J. J. S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, and B. Stucker, “Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting,” Journal of Materials Science, vol. 52, no. 7, pp. 4117–4131, 2017, doi: 10.1007/s10853-017-0737-y.

[13] V. Gunenthiram, P. Peyre, M. Schneider, M. Dal, F. Coste, and R. Fabbro, “Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel,” Journal of Laser Applications, vol. 29, no. 2, 2017, Art. no. 022303, doi: 10.2351/1.4983259.

[14] S. V. Adjamsky, Y. V. Tkachev, and G. A. Kononenko, “Effect of selective laser melting parameters on the melt pool formed by single tracks of the heat-resistant Inconel 718 nickel alloy,” Powder Metallurgy and Metal Ceramics, vol. 59, no. 9–10, pp. 592–600, 2021, doi: 10.1007/s11106-021-00183-8.

[15] F. Xu, F. Xiong, M.-J. Li, and Y. Lian, “Three-dimensional numerical simulation of grain growth during selective laser melting of 316L stainless steel,” Materials, vol. 15, no. 6800, pp. 1–27, Sep. 2022, doi: 10.3390/ma15196800.

[16] J. Beck, A. Schricker, C. Körner, and R. F. Singer, “Ultra-short pulsed laser powder bed fusion of Al-Si alloys: Impact of pulse duration and energy in comparison to continuous wave excitation,” Additive Manufacturing, vol. 37, 2021, Art. no. 101631, doi: 10.1016/j.addma. 2020.101631.

[17] X. Zhu, T. Yin, Y. Hu, S. Li, D. Wu, and Z. Xia, “Additive manufacturing of dense Ti6Al4V layer via picosecond pulse laser,” Materials, vol. 16, no. 324, pp. 1–17, 2023, doi: 10.3390/ma 16010324.

[18] L. Caprio, A. G. Demir, and B. Previtali, “Comparative study between CW and PW emissions in selective laser melting,” Journal of Laser Applications, vol. 30, no. 3, 2018, Art. no. 032305, doi: 10.2351/1.5040631.

[19] C. A. Biffi, J. Fiocchi, P. Bassani, and A. Tuissi, “Continuous wave vs pulsed wave laser emission in selective laser melting of AlSi10Mg parts with industrial optimized process parameters: Microstructure and mechanical behaviour,” Additive Manufacturing, vol. 24, pp. 639–646, 2018, doi: 10.1016/j.addma.2018.10.021.

[20] A. G. Demir, L. Mazzoleni, L. Caprio, M. Pacher, and B. Previtali, “Complementary use of pulsed and continuous wave emission modes to stabilize melt pool geometry in laser powder bed fusion,” Optics and Laser Technology, vol. 113, pp. 15–26, 2019, doi: 10.1016/j.optlastec. 2018.12.005.

[21] R. Morgan, C. J. Sutcliffe, and W. O’Neill, “Experimental investigation of nanosecond pulsed Nd: YAG laser re-melted pre-placed powder beds,” Rapid Prototyping Journal, vol. 7, no. 3, pp. 159–172, 2001, doi: 10.1108/ 13552540110395565.

[22] X. Ding, L. Wang, and S. Wang, “Comparison study of numerical analysis for heat transfer and fluid flow under two different laser scan patterns during selective laser melting,” Optik, vol. 127, no. 22, pp. 10898–10907, 2016, doi: 10.1016/ j.ijleo.2016.08.123.

[23] S. Li, H. Xiao, K. Liu, W. Xiao, Y. Li, X. Han, J. Mazumder, and L. Song, “Melt-pool motion, temperature variation and dendritic morphology of Inconel 718 during pulsed- and continuous-wave laser additive manufacturing: A comparative study,” Materials & Design, vol. 117, pp. 126–135, 2017, doi: 10.1016/j.matdes. 2017.01.065.

[24] T. Ullsperger, D. Liu, B. Yürekli, G. Matthäus, L. Schade, B. Seyfarth, H. Kohl, R. Ramm, M. Rettenmayr, and S. Nolte, “Ultra-short pulsed laser powder bed fusion of Al-Si alloys: Impact of pulse duration and energy in comparison to continuous wave excitation,” Additive Manufacturing, vol. 46, 2021, Art. no. 102085, doi: 10.1016/j.addma.2021.102085.

[25] T. Laag, T. M. Winkel, L. Jauer, D. Heußen, and C. L. Haefner, “Improvement of part accuracy by combination of pulsed wave (PW) and continuous wave (CW) laser powder bed fusion,” Berg Huettenmaenn Monatsh, vol. 167, no. 7, pp. 308–317, 2022, doi: 10.1007/s00501-022-01235-1.

[26] C. Guo, Y. Zhou, X. Li, X. Hu, Z. Xu, E. Dong, Q. Zhu, and R. M. Ward, “A comparing study of defect generation in IN738LC superalloy fabricated by laser powder bed fusion: Continuous-wave mode versus pulsed-wave mode,” Journal of Materials Science & Technology, vol. 90, pp. 45–57, 2021, doi: 10.1016/j.jmst.2021.03.006.

[27] K. Georgilas, R. H. U. Khan, and M. E. Kartal, “The influence of pulsed laser powder bed fusion process parameters on Inconel 718 material properties,” Materials Science & Engineering A, vol. 769, 2020, Art. no. 138527, doi: 10.1016/ j.msea.2019.138527.

[28] J. Grünewald, J. Reinelt, H. Sedlak, and K. Wudy, “Support-free laser-based powder bed fusion of metals using pulsed exposure strategies,” Progress in Additive Manufacturing, vol. 8, no. 3, pp. 123–138, 2023, doi: 10.1007/ s40964-023-00429-4.

[29] S. M. H. Hojjatzadeh, Q. Guo, N. D. Parab, M. Qu, L. I. Escano, K. Fezzaa, W. Everhart, T. Sun, and L. Chen, “In-Situ characterization of pore formation dynamics in pulsed wave laser powder bed fusion,” Materials, vol. 14, no. 11, p. 2936, 2021, doi: 10.3390/ma14112936.

[30] J. Grünewald, P. Clarkson, R. Salveson, G. Fey, and K. Wudy, “Influence of pulsed exposure strategies on overhang structures in powder bed fusion of Ti6Al4V using laser beam,” Metals, vol. 11, no. 7, p. 1125, 2021, doi: 10.3390/met 11071125.

[31] K. Karami, A. Blok, L. Weber, S. M. Ahmadi, R. Petrov, K. Nikolic, E. V. Borisov, S. Leeflang, C. Ayas, A. A. Zadpoor, M. Mehdipour, E. Reinton, and V. A. Popovich, “Continuous and pulsed selective laser melting of Ti6Al4V lattice structures: Effect of post-processing on microstructural anisotropy and fatigue behaviour,” Additive Manufacturing, vol. 36, 2020, Art. no. 101433, doi: 10.1016/j.addma. 2020.101433.

[32] P. Ninpetch, P. Chalermkarnnon, and P. Kowitwarangkul, “Multiphysics simulation of thermal‑fluid behavior in laser powder bed fusion of H13 steel: Influence of layer thickness and energy input,” Metals and Materials International, vol. 29, pp. 536–551, 2023, doi: 10.1007/s12540-022-01239-z

[33] M. Bayat, V. K. Nadimpalli, and J. H. Hattel, “Multiphysics simulation of thermal and fluid dynamics phenomena during the pulsed laser powder bed fusion process of 316-L steel,” in the 17th UK Heat Transfer Conference (UKHTC2021), Apr. 2022, pp. 1–6.

[34] X. Shan, Z. Pan, M. Gao, L. Han, J.-P. Choi, and H. Zhang, “Multi-Physics modeling of melting-solidification characteristics in laser powder bed fusion process of 316L stainless steel,” Materials, vol. 17, no. 4, p. 946, 2024, doi: 10.3390/ma17040946.

[35] W. Wang, W. Lin, R. Yang, Y. Wu, J. Li, Z. Zhang, and Z. Zhai, “Mesoscopic evolution of molten pool during selective laser melting of superalloy Inconel 738 at elevating preheating temperature,” Materials & Design, vol. 213, 2022, Art. no. 110355, doi: 10.1016/j.matdes. 2021.110355.

[36] H. Li, X. Liang, Y. Li, and F. Lin, “Performance of high-layer-thickness Ti6Al4V fabricated by electron beam powder bed fusion under different accelerating voltage values,” Materials, vol. 15, no. 5, p. 1878, 2022, doi: 10.3390/ma15051878.

[37] B. Cheng, X. Li, C. Tuffile, A. Ilin, H. Willeck, and U. Hartel, “Multi-Physics modeling of single-track scanning in selective laser melting: Powder compaction effect,” in Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 2018, pp. 1887–1902.

[38] A. Laazizi, B. Courant, F. Jacquemin, and H. Andrzejewski, “Applied multi-pulsed laser in surface treatment and numerical–experimental analysis,” Optics & Laser Technology, vol. 43, no. 7, pp. 1257–1263, 1997, doi: 10.1016/ j.optlastec.2011.03.019.

[39] W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, G. J. Wagner, F. Lin, and W. K. Liu, “Multi-Physics modeling of single/multiple-track defect mechanisms in electron beam selective melting,” Acta Materialia, vol. 137, pp. 214–224, 2017, doi: 10.1016/j.actamat.2017.08.033.

[40] C. Tang, J. L. Tan, and C. H. Wong, “A numerical investigation on the physical mechanisms of single track defects in selective laser melting,” International Journal of Heat and Mass Transfer, vol. 126, pp. 957–968, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.06.073.

[41] J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, P. M. Sequeira Almeida, F. Wang, and S. Williams, “Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts,” Computational Materials Science, vol. 50, pp. 3315–3322, 2011, doi: 10.1016/j.commatsci.2011.06.023.

[42] K. C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys. Cambridge, UK: Woodhead Publishing, 2002.

[43] M.-S. Pham, B. Dovgyy, P. A. Hooper, C. M. Gourlay, and A. Piglione, “The role of side-branching in microstructure development in laser powder-bed fusion,” Nature Communications, vol. 11, no. 749, 2020, doi: 10.1038/s41467-020-14453-3.

[44] A. K. Ball and A. Basak, “AI modeling for high-fidelity heat transfer and thermal distortion forecast in metal additive manufacturing,” The International Journal of Advanced Manufacturing Technology, vol. 128, pp. 2995–3010, 2023, doi: 10.1007/s00170-023-11974-1.

[45] Z. Zhang, T. Zhang, C. Sun, S. Karna, and L. Yuan, “Understanding melt pool behavior of 316L stainless steel in laser powder bed fusion additive manufacturing,” Micromachines, vol. 15, no. 2, p. 170, 2024, doi: 10.3390/mi15020170.

[46]  M. Cheng, X. Zou, Y. Pan, Y. Zhou, W. Liu, and L. Song, “Residual stress control using process optimization in directed energy deposition,” Materials, vol. 16, no. 19, p. 6610, 2023, doi: 10.3390/ma16196610.

[47] T. Rautio, J. Jalava-Kanervio, J. Kumpula, J. Mäkikangas, and A. Järvenpää, “Microstructure and mechanical properties of laser butt welded laser powder bed fusion manufactured and sheet metal 316L parts,” Key Engineering Materials, vol. 861, pp. 9–14, 2020, doi: 10.4028/ www.scientific.net/KEM.861.9.

[48] B. E. Kashyap and K. Tangri, “Grain growth behaviour of type 316L stainless steel,” Materials Science and Engineering: A, vol. 149, pp. L13–L16, 1992, doi: 10.1016/0921-5093(92) 90392-E.

[49]  J. Bliedtner, H. Müller, and A. Barz, Lasermaterialbearbeitung: Grundlagen – Verfahren – Anwendungen – Beispiele. Leipzig, Germany: Fachbuchverlag Leipzig, 2013.

[50]  H. Yin, J. Yang, R. D. Fischer, Z. Zhang, B. Prorok, L. Yuan, and X. Lou, “Pulsed laser additive manufacturing for 316L stainless steel: A new approach to control subgrain cellular structure,” JOM, vol. 75, no. 12, pp. 5027–5036, 2023, doi: 10.1007/s11837-023-06177-8.

[51]  Z. Rui, J. Liu, and Y. Shi, “Influence of laser mode on size effect in manufacturing AlSi10Mg mini structures by laser powder bed fusion technology,” Optics and Laser Technology, vol. 181, 2025, Art. no. 111748, doi: 10.1016/ j.optlastec.2024.111748.

[52]  P. Nogueira, D. C. Silva, A. P. Serro, P. Lopes, L. Oliveira, J. L. Alves, L. Reis, J. Magrinho, C. Santos, M. J. Carmezim, R. A. Cláudio, A. M. Deus, M. B. Silva, and M. F. Vaz, “Evaluation of the roughness of lattice structures of AISI 316L stainless steel produced by laser powder bed fusion,” Engineering Manufacturing Letters, vol. 2, no. 1, pp. 39–44, 2024, doi: 10.24840/ 2795-5168_002-001_2682.

[53]  C. Tang, K. Q. Le, and C. H. Wong, “Physics of humping formation in laser powder bed fusion,” International Journal of Heat and Mass Transfer, vol. 149, Mar. 2020, Art. no. 119172, doi: 10.1016/j.ijheatmasstransfer.2019.119172.

[54] E. Assuncao, S. Williams, and D. Yapp, “Interaction time and beam diameter effects on the conduction mode limit,” Optics and Lasers in Engineering, vol. 50, no. 6, pp. 823–828, 2012, doi: 10.1016/j.optlaseng.2012.02.001.

[55]  T. Qi, H. Zhu, H. Zhang, J. Yin, L. Ke, and X. Zeng, “Selective laser melting of Al7050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode,” Materials & Design, vol. 134, pp. 334–347, 2017, doi: 10.1016/j.matdes.2017.09.014.

[56]  Y. Xu, Y. Zhang, X. Li, Y. Zhong, K. Lin, B. Liao, X. Guo, C. Yuan, and S. Zhang, “Single-track investigation of additively manufactured mold steel with larger layer thickness processing: Track morphology, melt pool characteristics and defects,” Optics & Laser Technology, vol. 171, 2024, Art. no. 110378, doi: 10.1016/j.optlastec. 2023.110378.

[57] J. Pou, A. Riveiro, and P. Davim, Additive Manufacturing. Amsterdam, Netherlands: Elsevier, 2021.

[58] L’. Kaščák, J. Varga, J. Bidulská, and R. Bidulský, “Simulation of 316L stainless steel produced by the laser powder bed fusion process,” Materials, vol. 16, no. 24, p. 7653, Dec. 2023, doi: 10.3390/ma16247653.

[59] W. Wang, H. Garmestani, and S. Y. Liang, “Prediction of upper surface roughness in laser powder bed fusion,” Metals, vol. 12, no. 1, p. 11, 2021, doi: 10.3390/met12010011.

Full Text: PDF

DOI: 10.14416/j.asep.2025.03.007

Refbacks

  • There are currently no refbacks.