Strengthening Natural Rubber with Activated Carbon from Cassava Rhizome Waste: Cure Characteristics, Physical, Thermal, and Mechanical Properties
Abstract
This study aims to develop a bio-reinforcing filler from cassava rhizome waste, a common agricultural residue in northeastern Thailand that generates a significant amount of waste annually. The waste was turned into activated carbon (AC) by activating it with potassium hydroxide (KOH) and microwave irradiation. AC was then used as a reinforcing agent in natural rubber (NR) composites. The effects of KOH concentration and AC content on the cure characteristics, as well as the physical, thermal, and mechanical properties of the composites, were investigated. At optimal AC content, scorch time decreased by 13.74%, torque difference increased by 17.20%, and cure time was reduced by 2.90%. Mechanical properties improved with higher AC content, with AC prepared at lower KOH concentration exhibiting superior performance. The swelling index decreased with increasing AC content, indicating enhanced solvent resistance. Utilizing cassava rhizome-derived AC offers significant environmental benefits by repurposing agricultural waste. Future research could optimize preparation processes to further enhance performance and explore industrial applications. This study highlights the potential of cassava waste as an eco-friendly and sustainable filler for rubber composites.
Keywords
[1] B. Wang, J. Lan, C. Bo, B. Gong, and J. Ou, “Adsorption of heavy metal onto biomass-derived activated carbon: Review,” RSC Advances, vol. 13, pp. 4275–4302, 2023, doi: 10.1039/d2ra07911a.
[2] E. H. Sujiono, D. Zabrian, Zurnansyah, Mulyati, V. Zharvan, Samnur, and N. A. Humairah, “Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application,” Results in Chemistry, vol. 4, 2022, Art. no. 100291, doi: 10.1016/j.rechem.2022.100291.
[3] S. Chaisit, N. Chanlek, J. Khajonrit, T. Sichumsaeng, and S. Maensiri, “Preparation, characterization, and electrochemical properties of KOH-activated carbon from cassava root,” Materials Research Express, vol. 7, 2020, Art. no. 105605, doi: 10.1088/2053-1591/abbf84.
[4] N. A. Basha, T. Rathinavel, and H. Sridharan, “Activated carbon from coconut shell: Synthesis and its commercial applications- A recent review,” Applied Science and Engineering Progress, vol. 16, no. 2, 2023, Art. no. 6152, doi: 10.14416/j.asep.2022.07.001.
[5] M. M. Alam, M. A. Hossain, M. D. Hossain, M. A. H. Johir, J. Hossen, M. S. Rahman, J. L. Zhou, A. T. M. K. Hasan, A. K. Karmakar, and M. B. Ahmed, “The potentiality of rice husk-derived activated carbon: From synthesis to application,” Processes, vol. 8, p. 203, 2020, doi: 10.3390/ pr8020203.
[6] M. S. Yerdauletov, K. Nazarov, B. Mukhametuly, M. A. Yeleuov, C. Daulbayev, R. Abdulkarimova, A. Yskakov, F. Napolskiy, and V. Krivchenko, “Characterization of activated carbon from rice husk for enhanced energy storage devices,” Molecules, vol. 28, p. 5818, 2023, doi:10.3390/molecules28155818.
[7] S. Heo, W. Kim, Y. Jo, and A. A. Adelodun, “Fabrication of bamboo-based activated carbon for low-level CO2 adsorption toward sustainable indoor air,” Sustainability, vol. 16, p. 1634, 2024, doi:10.3390/su16041634.
[8] D. A. Khuong, H. N. Nguyen, and T. Tsubota, “Activated carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents,” Biomass and Bioenergy, vol. 148, May 2021, Art. no. 106039, doi: 10.1016/ j.biombioe.2021.106039.
[9] Z. Deng, S. Sun, H. Li, D. Pan, R. R. Patil, Z. Guo, and I. Seok, “Modification of coconut shell-based activated carbon and purification of wastewater,” Advanced Composites and Hybrid Materials, vol. 4, pp. 65–73, 2021, doi: 10.1007/ s42114-021-00205-4.
[10] P. Poolprasert and T. Chorchong, “Preparation of activated carbon from cassava root for cadmium removal in aqueous solution sample,” Journal of Renewable Energy and Smart Grid Technology, vol. 15, no. 2, pp. 26–38, Dec. 2020.
[11] W. Singsang, J. Suetrong, T. Choedsanthia, N. Srakaew, S. Jantrasee, and N. Prasoetsopha, “Properties of biodegradable poly (butylene succinate) filled with activated carbon synthesized from waste coffee grounds,” Journal of Materials Science and Applied Energy, vol. 10, no. 3, pp. 87–95, Aug. 2021.
[12] N. M. Musyoka, B. K. Mutuma, and N. Manyala, “Onion-derived activated carbons with enhanced surface area for improved hydrogen storage and electrochemical energy application,” RSC Advances, vol. 10, pp. 26928–26936, 2020, doi: 10.1039/D0RA04556J.
[13] M. Lay, A. Susli, M. K. Abdullah, Z. A. Abdul Hamid, and R. K. Shuib, “Converting dead leaf biomass into activated carbon as a potential replacement for carbon black filler in rubber composites,” Composites Part B: Engineering, vol. 201, Nov. 2020, Art. no. 108366, doi: 10.1016/j.compositesb.2020.108366.
[14] S. N. S. Ismail, N. N. I. N. Ibrahim, S. N. Rasli, N. A. Majid, N. M. Abdul Wahab, S. N. Jamal, S. Zakaria, and K. Nazir, “Reinforcement of charcoal activated carbon (CAC) in natural rubber (NR) compound: In comparison with carbon black,” ASEAN Engineering Journal, vol. 16, no. 2, pp. 161-167, Jun. 2022. doi: 10.11113/ aej.v12.17224.
[15] A. Yurtay, İ. Özkan, and M. Kiliç, “Preparation and characterization of carbon/polymer composite as a novel ethylene scavenger to preserve fruit and vegetables quality in refrigerator drawer,” Postharvest Biology and Technology, vol. 216, Oct. 2024, Art. no. 113032, doi: 10.1016/j.postharvbio.2024.113032.
[16] A. Fazli and D. Rodrigue, “Recycling waste tires into ground tire rubber (GTR)/rubber compounds: A review,” Journal of Composites Science, vol. 4, no. 3, p. 103, 2020, doi: 10.3390/ jcs4030103.
[17] P. Mente, M. Te, and H. Sp, “Natural rubber and reclaimed rubber composites- A systematic review,” Polymer science, vol. 2, 2016, doi: 10.4172/2471-9935.100015.
[18] L. Bokobza, “Elastomer nanocomposites: Effect of filler–matrix and filler–filler interactions,” Polymers, vol. 15, no. 13, p. 2900, 2023, doi: 10.3390/polym15132900.
[19] E. Farida, N. Bukit, E. M. Ginting, and B. F. Bukit, “The effect of carbon black composition in natural rubber compound,” Case Studies in Thermal Engineering, vol. 16, Dec. 2019, Art. no. 100566, doi: 10.1016/j.csite.2019.100566.
[20] C. G. Robertson and N. J. Hardman, “Nature of carbon black reinforcement of rubber: Perspective on the original polymer nanocomposite,” Polymers, vol. 13, no. 4, p. 538, 2021, doi: 10.3390/polym13040538.
[21] K. Katueangngan, T. Tulyapitak, A. Saetung, S. Soontaranon, and N. Nithi-uthai, “Renewable interfacial modifier for silica filled natural rubber compound,” Procedia Chemistry, vol. 19, pp. 447-454, 2016, doi: 10.1016/j.proche.2016.03.037.
[22] P. Nuinu, C. Sirisinha, K. Suchiva, P. Daniel, and P. Phinyocheep, “Improvement of mechanical and dynamic properties of high silica filled epoxide functionalized natural rubber,” Journal of Materials Research and Technology, vol. 24, pp. 2155-2168, 2023, doi: 10.1016/j.jmrt.2023. 03.101.
[23] S. K. Palaniappan, M. K. Singh, S. M. Rangappa, and S. Siengchin, “Eco-friendly biocomposites: A step towards achieving sustainable development goals,” Applied Science and Engineering Progress, vol. 27, no. 4, 2024, Art. no. 7373, doi: 10.14416/j.asep.2024.02.003.
[24] R. Phiri, S. M. Rangappa, S. Siengchin, and D. Marinkovic, “Agro-waste natural fiber sample preparation techniques for bio-composites development: Methodological insights,” Facta Universitatis, Series: Mechanical Engineering, vol. 21, no. 4, pp. 631-656, 2023, doi: 10.22190/ fume230905046p.
[25] A. Boonmee, P. Sabsiriroht, and K. Jarukumjorn, “Preparation and characterization of rice husk ash for using as a filler in natural rubber,” Materials Today: Proceedings, vol. 17 pp. 2097-2103, 2019, doi: 10.1016/j.matpr.2019.06.259.
[26] N. Choophun, N. Chaiammart, K. Sukthavon, C. Veranitisagul, A. Laobuthee, A. Watthanphanit, and G. Panomsuwan, “Natural rubber composites reinforced with green silica from Rice husk: Effect of filler loading on mechanical properties,” Journal of Composites Science, vol. 6, no. 12, p. 369, 2022, doi:10.3390/jcs6120369.
[27] C. Siriwong, S. Boopasiri, V. Jantarapibun, B. Kongsook, S. Pattanawanidchai, and P. Sae-oui, “Properties of natural rubber filled with untreated and treated spent coffee grounds,” Journal of Applied Polymer Science, vol. 135, no. 13, 2018, Art. no. 46060, doi: 10.1002/ app.46060.
[28] S. C. Peterson, “Carbon black replacement in natural rubber composites using dry-milled calcium carbonate, soy protein, and biochar,” Processes, vol. 10, no. 1, p. 123, 2022, doi: 10.3390/pr10010123.
[29] J. Mago, A. Negi, K. K. Pant, and S. Fatima, “Development of natural rubber-bamboo biochar composites for vibration and noise control applications,” Journal of Cleaner Production, vol. 373, Nov. 2022, Art. no. 133760, doi: 10.1016/j.jclepro.2022.133760.
[30] R. E. Eyo-Honesty and P. Evudiovo, “Development of carbon fibre reinforced natural rubber composite for vibration isolation,” IOP Conference Series: Earth and Environmental Science, vol. 730, 2021, Art. no. 012016, doi: 10.1088/1755-1315/730/1/012016.
[31] A. A. Al-Ghamdi, O. A. Al-Hartomy, F. R. Al-Solamy, N. Dishovsky, R. Nickolov, M. Mihaylov, P. Malinova, and K. Ruskova, “Preparation and characterisation of natural rubber composites comprising hybrid fillers of activated carbon / in situ synthesised magnetite.” Journal of Rubber Research, vol. 21, pp. 94-118, 2018, doi: 10.1007/BF03449164.
[32] H. Tan and A. I. Isayev, “Comparative study of silica-, nanoclay- and carbon black-filled EPDM rubbers,” Journal of Applied Polymer Science, vol. 109, no. 2, pp. 767-774, 2008, doi: 10.1002/app.28130.
[33] M. H. Al-Maamori, A. A. A. Al-Zubaidi, and A. A. Subeh, “Effect of carbon black on mechanical and physical properties of acrylonitrile butadiene rubber (NBR) composite,” Academic Research International, vol. 6, no. 2, pp. 28-37, Mar. 2015.
[34] S. Chuayjuljit, A. Imvittaya, N. Na-Ranong, and P. Potiyaraj, “Effects of particle size and amount of carbon black and calcium carbonate on curing characteristics and dynamic mechanical properties of natural rubber,” Journal of Metals, Materials and Minerals, vol. 12, no. 1, pp. 51-57, 2022.
[35] P. Waramit, B. Krittakom, and R. Luampon, “Experimental investigation to evaluate the effective moisture diffusivity and activation energy of cassava (Manihot Esculenta) under convective drying,” Applied Science and Engineering Progress, vol. 15, no. 4, 2022, Art. no. 5518, doi: 10.14416/j.asep.2021.10.008.
[36] A. Elmouwahidi, E. Bailón-García, A. F. Pérez-Cadenas, F. J. Maldonado-Hódar, and F. Carrasco-Marín, “Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes,” Electrochimica Acta, vol. 229, pp. 219-229, 2017, doi: 10.1016/j.electacta. 2017.01.152.
[37] E. Raymundo-Piñero, P. Azaïs, T. Cacciaguerra, D. Cazorla-Amorós, A. Linares-Solano, and F. Béguin, “KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization,” Carbon, vol. 43, no. 4, pp. 786-795, 2005, doi: 10.1016/ j.carbon.2004.11.005.
[38] S. Li, X. Tan, H. Li, Y. Gao, Q. Wang, G. Li, and M. Guo, “Investigation on pore structure regulation of activated carbon derived from sargassum and its application in supercapacitor,” Scientific Reports, vol. 12, no. 1, 2022, Art. no. 10106, doi: 10.1038/s41598-022-14214-w.
[39] P. Yang, L. Rao, W. Zhu, L. Wang, R. Ma, F. Chen. G. Lin, and X. Hu, “Porous carbons derived from sustainable biomass via a facile one-step synthesis strategy as efficient CO2 adsorbents,” Industrial & Engineering Chemistry Research, vol. 59, no. 13, pp. 6194-6201, 2020, doi: 10.1021/acs.iecr.0c00073.
[40] G. Raju, M. Khalid, M. M. Shaban, and B. Azahari, “Preparation and characterization of eco-friendly spent coffee/ENR50 biocomposite in comparison to carbon black,” Polymers, vol. 13, no. 16, p. 2796, 2021, doi: 10.3390/polym 13162796.
[41] I. Surya and M. Siswarni, “Crosslink density and rheometric behaviour of natural rubber/ chloroprene rubber blends,” IOP Conference Series: Materials Science and Engineering, vol. 505, 2019, Art. no. 012113, doi: 10.1088/1757-899X/505/1/012113.
[42] J. Lubura, P. Kojić, B. Ikonić, J. Pavličević, D. Govedarica, and O. Bera, “Influence of biochar and carbon black on natural rubber mixture properties,” Polymer International, vol. 71, no. 11, pp. 1347-1353, Nov. 2022, doi: 10.1002/ pi.6439.
[43] S. Phattarateera and C. Pattamaprom, “The viscosity effect of masticated natural vs. synthetic isoprene rubber on toughening of polylactic acid,” International Journal of Polymer Science, vol. 2019, 2019, Art. no. 5679871, doi: 10.1155/2019/5679871.
[44] P. Mekbuntoon, S. Kongpet, W. Kaeochana, P. Luechar, P. Thongbai, A. Chingsungnoen, K. Chinnarat, S. Kaewnisai, and V. Harnchana, “The modification of activated carbon for the performance enhancement of a natural-rubber-based triboelectric nanogenerator,” Polymers, vol. 15, no. 23, p. 4562, 2023, doi: 10.3390/ polym15234562.
[45] I. Sittitanadol, N. Srakeaw, P. Somdee, P. Chumsamrong, S. Noyming, W. Singsang, and N. Prasoetsopha, “Utilizing coconut biochar as a bio-reinforcing agent in natural rubber composites,” Starch – Stärke, 2024, Art. no. 2400168, doi: 10.1002/star.202400168.
[46] Ş. Bülbül and H. Ergün, “Investigation of the usability of activated carbon as a filling material in nitrile butadiene rubber/natural rubber components and modeling by regression analysis,” Journal of Elastomers & Plastics, vol. 56, no. 1, pp. 53-73, 2024, doi: 10.1177/ 00952443231215469.
[47] D. M. Manohar, S. Chandramohan, R. Natarajan, and V. Muralidharan, “Investigations on the mechanical and damping properties of styrene- butadiene rubber with graphene and carbon black,” FME Transactions, vol. 51, no. 3, pp. 386-395, 2023, doi: 10.5937/fme2303386C.
[48] W. B. Ribeiro, G. B. Bérti, M. Faccio, M. Godinho, and R. N. Brandalise, “Evaluation of biochar production temperature in interaction with elastomers of different polarities,” Materials Research, vol. 26, 2023, doi: 10.1590/1980-5373-MR-2022-0341.
[49] T. A. T. Yasim-Anuar, L. N. Yee-Foong, A. A. Lawal, M. A. A. Farid, M. Z. M. Yusuf, M. A. Hassan, and H. Arifin, “Emerging application of biochar as a renewable and superior filler in polymer composites,” RSC Advances, vol. 12, pp. 13938-13949, 2022, doi: 10.1039/D2RA01897G.
[50] M. Qian, B. Zou, Z. Chen, W. Huang, X. Wang, B. Tang, Q. Liu, and Y. Zhu, “The influence of filler size and crosslinking degree of polymers on mullins effect in filled NR/BR composites,” Polymers, vol. 13, no. 14, p. 2284, 2021, doi: 10.3390/polym13142284.
[51] D. Y. Kim, J. W. Park, D. Y. Lee, and K. H. Seo, “Correlation between the crosslink characteristics and mechanical properties of natural rubber compound via accelerators and reinforcement,” Polymers, vol. 12, no. 9, p. 2020, 2020, doi: 10.3390/polym12092020.DOI: 10.14416/j.asep.2025.03.002
Refbacks
- There are currently no refbacks.