Preparation and Characterization of Cellulose Film from Velvet Tamarind Rind (Dialium indum L.) for Food Packaging
Abstract
Keywords
[1] M. Hasan, D. Gopakumar, and N. Olaiya, “Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films,” International Journal of Biological Macromolecule, vol. 156, pp. 896–905, 2020, doi: 10.1016/j.ijbiomac.2020.04.039.
[2] R. Tong, G. Chen, J. Tian, and M. He, “Highly transparent, weakly hydrophilic and biodegradable cellulose film for flexible electroluminescent devices,” Carbohydrate. Polymer, vol. 227, 2020, Art. no. 115366, doi: 10.1016/j.carbpol.2019.115366.
[3] R. E. Hester and R. M. Harrison, Marine Pollution and Human Health. London, UK: The Royal Society of Chemistry, Sep. 2011, doi: 10.1039/9781849732871.
[4] L. S. F. Leite, F. K. V. Moreira, L. H. C. Mattoso, and J. Bras, “Electrostatic interactions regulate the physical properties of gelatin-cellulose nanocrystals nanocomposite films intended for biodegradable packaging,” Food Hydrocolloid, vol. 113, 2021, Art. no. 106424, doi: 10.1016/ j.foodhyd.2020.106424.
[5] R. Reshmy, E. Philip, P. H. Vaisakh, S. Raj, S. A. Paul, A. Madhavan, R. Sindhu, P. Binod, R. Sirohi, A. Pugazhendhi, and A. Pandey, “Development of an eco-friendly biodegradable plastic from jack fruit peel cellulose with different plasticizers and Boswellia serrata as filler,” Science of the Total Environmental, vol. 767, 2021, Art. no. 144285, doi: 10.1016/j. scitotenv.2020.144285.
[6] J. Yang, Y. C. Ching, and C. H. Chuah, “Applications of lignocellulosic fibers and lignin in bioplastics: A review,” Polymers, vol. 11, Art. no. 5, p. 751, 2019, doi: 10.3390/polym 11050751.
[7] W. Chiari, R. Damayanti, H. Harapan, K. Puspita, S. Saiful, R. Rahmi, D. R. Rizki, and M. Iqhrammullah, “Trend of polymer research related to COVID-19 pandemic: Bibliometric analysis,” Polymers (Basel), vol. 14, Art. no. 16, p. 3297, Aug. 2022, doi: 10.3390/polym14163297.
[8] S. Esteghlal, M. Niakousari, and S. M. H. Hosseini, “Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions,” International Journal of Biological and Macromolecule, vol. 114, pp. 1–9, Jul. 2018, doi: 10.1016/J.IJBIOMAC.2018.03.079.
[9] K. Thinkohkaew, N. Rodthongkum, and S. Ummartyotin, “Coconut husk (Cocos nucifera) cellulose reinforced poly vinyl alcohol-based hydrogel composite with control-release behavior of methylene blue,” Journal of Materials Research and Technology, vol. 9, no. 3, pp. 6602–6611, 2020, doi: 10.1016/j.jmrt.2020. 04.051.
[10] H. Fathana, Rahmi, M. Adlim, S. Lubis, and M. Iqhrammullah, “Sugarcane bagasse-derived cellulose as an eco-friendly adsorbent for Azo dye removal,” International Journal of Design & Nature and Ecodynamics, vol. 18, no. 1, pp. 11–20, Feb. 2023, doi: 10.18280/ijdne.180102.
[11] H. Fathana, M. Adlim, S. Lubis, M. Iqhrammullah, and Rahmi, “Chitosan film composite with sugarcane bagasse-derived cellulose filler for methylene blue adsorptive removal,” Rasayan Journal of Chemistry, vol. 16, no. 02, pp. 543–548, 2023, doi: 10.31788/RJC. 2023.1628204.
[12] G. Zhao, X. Lyu, J. Lee, X. Cui, and W.-N. Chen, “Biodegradable and transparent cellulose film prepared eco-friendly from durian rind for packaging application,” Food Packag. Shelf Life, vol. 21, Art. no. 100345, 2019, doi: 10.1016/j. fpsl.2019.100345.
[13] G. Perotto, L. Ceseracciu, R. Simonutti, U. C. Paul, S. Guzman-Puyol, T. N. Tran, I. S. Bayer, and A. Athanassiou, “Bioplastics from vegetable waste via an eco-friendly water-based process,” Green Chemistry, vol. 20, no. 4, pp. 894–902, Feb. 2018, doi: 10.1039/C7GC03368K.
[14] M. Mahardika, H. Abral, A. Kasim, S. Arief, and M. Asrofi, “Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication,” Fibers, vol. 6, no. 2, 2018, doi: 10.3390/fib6020028.
[15] R. Rahmi, S. Lubis, N. Az-Zahra, K. Puspita, and M. Iqhrammullah, “Synergetic photocatalytic and adsorptive removals of metanil yellow using TiO2/grass-derived cellulose/chitosan (TiO2/GC/CH) film composite,” International Journal of Engineering, vol. 34, no. 8, pp. 1827–1836, Aug. 2021, doi: 10.5829/ije.2021.34.08b.03.
[16] H. Abral, V. Lawrensius, D. Handayani, and E. Sugiarti, “Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization,” Carbohydrate Polymer, vol. 191, pp. 161–167, Jul. 2018, doi: 10.1016/ j.carbpol.2018.03.026.
[17] H. Abral, J. Ariksa, M. Mahardika, D. Handayani, I. Aminah, N. Sandrawati, A. B. Pratama, N. Fajri, S. M. Sapuan, and R. A. Ilyas, “Transparent and antimicrobial cellulose film from ginger nanofiber,” Food Hydrocolloid, vol. 98, Jan. 2020, Art. no. 105266, doi: 10.1016/ j.foodhyd.2019.105266.
[18] R. Rahmi, A. Patra, and Lelifajri, “Fabrication of coconut dregs residue derived nano-cellulose film for food packaging,” South African Journal of Chemical Engineering, vol. 48, pp. 71–79, Apr. 2024, doi: 10.1016/j.sajce.2024.01.009.
[19] R. Rahmi, A. Patra, L. Fajri, and H. Fathana, “Transparent cellulose film prepared from leftover coconut milk pulp,” AIP Conference Proceeding, vol. 3082, no. 1, Mar. 2024, Art. no. 40017, doi: 10.1063/5.0204231.
[20] R. K. Anushikha, P. K. Deshmukh, Kunam, and K. K. Gaikwad, “Guar gum based flexible packaging material with an active surface reinforced by litchi shell derived micro fibrillated cellulose and halloysite nanotubes,” Sustainable Chemistry and Pharmacy, vol. 36, 2023, Art. no. 101302, doi: 10.1016/j.scp.2023.101302.
[21] A. Rahman, S. M. A. Nipu, Md S. Alam, S. S. Alam, Md T. Ahmed, A. A. Shantona, and M. Moon, “Extraction of cellulosic compound from jackfruit peel waste and characterization of PVA cellulose composite as biodegradable film,” Journal of Engineering, vol. 2024, no. 1, Jan. 2024, doi: 10.1155/2024/5052750.
[22] H.-M. Ng, L. T. Sin, T.-T. Tee, S.-T. Bee, D. Hui, C.-Y. Low, and A. R. Rahmat, “Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers,” Composites Part B: Engineering, vol. 75, pp. 176–200, 2015, doi: 10.1016/j.compositesb. 2015.01.008.
[23] O. Lasekan and N. S. See, “Key volatile aroma compounds of three black velvet tamarind (Dialium) fruit species,” Food Chemistry, vol. 168, pp. 561–565, Feb. 2015, doi: 10.1016/ j.foodchem.2014.07.112.
[24] M. F. Osman, N. M. Hassan, A. Khatib, and S. M. Tolos, “Antioxidant activities of Dialium indum L. fruit and gas chromatography-mass spectrometry (GC-MS) of the active fractions,” Antioxidants, vol. 7, Art. no. 11, 2018, doi: 10.3390/antiox7110154.
[25] R. S. Samakradhamrongthai and T. Jannu, “Effect of stevia, xylitol, and corn syrup in the development of velvet tamarind (Dialium indum L.) chewy candy,” Food Chemistry, vol. 352, p. 129353, 2021, doi: 10.1016/j.foodchem.2021. 129353.
[26] S. Areeya, E. J. Panakkal, P. Kunmanee, A. Tawai, S. Amornraksa, M. Sriariyanun, A. Kaoloun, N. Hartini, Y.-S. Cheng, M. Kchaou, S. Dasari, and M. P Gundupalli, “A review of sugarcane biorefinery: from waste to value-added products,” Applied Sciences and Engineering Progress, vol. 17, no. 3, Jun. 2024, Art. no. 7402, doi: 10.14416/j.asep.2024.06.004.
[27] M. Sriariyanun, M. P. Gundupalli, V. Phakeenuya, T. Phusamtisampan, Y. S. Cheng, and P. Venkatachalam, “Biorefinery approaches for production of cellulosic ethanol fuel using recombinant engineered microorganisms,” Journal of Applied Sciences and Engineering, vol. 27, no. 2, pp. 1985–2005, 2024, doi: 10.6180/jase.202402_27(2).0001.
[28] R. J. P. Latiza and R. V. Rubi, “Circular economy integration in 1G+2G sugarcane bioethanol production: application of carbon capture, utilization and storage, closed-loop systems, and waste valorization for sustainability,” Applied Sciences and Engineering Progress, vol. 18. no. 1, Jul. 2025, Art. no. 7448, doi: 10.14416/j.asep.2024.07.005.
[29] C. G.-S. Ortiz-de-Montellano, P. Samani, and Y. van der Meer, “How can the circular economy support the advancement of the sustainable development goals (SDGs)? A comprehensive analysis,” Sustainable Production and Consumption, vol. 40, pp. 352–362, 2023, doi: 10.1016/j.spc.2023.07.003.
[30] Y. H. Feng, T. Y. Cheng, W. G. Yang, P. T. Ma, H. Z. Hei, X. C. Yin, and X. X. Yu, “Characteristics and environmentally friendly extraction of cellulose nanofibrils from sugarcane bagasse,” Industrial Crops and Products, vol. 111, pp. 285–291, Jan. 2018, doi: 10.1016/j.indcrop.2017.10.041.
[31] P. K. Gupta, S. S. Raghunath, D. V. Prasanna, P. Venkat, V. Shree, C. Chithananthan, S. Choudhary, K. Surender, and K. Geetha, An Update on Overview of Cellulose, Its Structure and Applications. Rijeka: IntechOpen, 2019, doi: 10.5772/intechopen.84727.
[32] D. Fengel, “The ultrastructure of cellulose from wood,” Wood Sciences and Technology, vol. 3, no. 3, pp. 203–217, Sep. 1969, doi: 10.1007/ BF00367212.
[33] S. S. Hassan, G. A. Williams, and A. K. Jaiswal, “Emerging technologies for the pretreatment of lignocellulosic biomass,” Bioresource Technology, vol. 262, pp. 310–318, Aug. 2018, doi: 10.1016/j.biortech.2018.04.099.
[34] I. Kubovský, D. Kačíková, and F. Kačík, “Structural changes of oak wood main components caused by thermal modification,” Polymers, vol. 12, no. 2, p. 485, 2020, doi: 10.3390/polym12020485.
[35] P. B. Subhedar, P. Ray, and P. R. Gogate, “Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation,” Ultrasond Sonochemistry, vol. 40, pp. 140–150, 2018, doi: 10.1016/j. ultsonch.2017.01.030.
[36] W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang, and Y. Hai, “Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments,” Carbohydrate Polymer, vol. 83, no. 4, pp. 1804–1811, 2011, doi: 10.1016/j. carbpol.2010.10.040.
[37] Z. Z. Chowdhury, S. Bee, and A. Hamid, “Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process,” BioResources, vol. 11, no. 2, pp. 3397–3415, Feb. 2016, doi: 10.15376/biores.11.2.3397-3415.
[38] N. Shahi, B. Min, B. Sapkota, and V. K. Rangari, “Eco-friendly cellulose nanofiber extraction from sugarcane bagasse and film fabrication,” Sustainability, vol. 12, no. 15, p. 6015, 2020, doi: 10.3390/su12156015.
[39] Y. Ma, Q. Xia, Y. Liu, W. Chen, S. Liu, Q. Wang, Y. Liu, J. Li, and H. Yu. “Production of nanocellulose using hydrated deep eutectic solvent combined with ultrasonic treatment,” ACS Omega, vol. 4, no. 5, pp. 8539–8547, May 2019, doi: 10.1021/acsomega.9b00519.
[40] B. Li, F. Lu, H. Nan, and Y. Liu, “Isolation and structural characterisation of okara polysaccharides,” Molecules, vol. 17, no. 1, pp. 753–761, 2012, doi: 10.3390/molecules17010753.
[41] A. Bouftou, K. Aghmih, F. Lakhdar, N. Abidi, S. Gmouh, and S. Majid, “Enhancing cellulose acetate film with green plasticizers for improved performance, biodegradability, and migration study into a food simulant,” Measurement: Food, vol. 15, Sep. 2024, Art. no. 100180, doi: 10.1016/j.meafoo.2024.100180.
[42] N. Khotsaeng, W. Simchuer, T. Imsombut, and P. Srihanam, “Effect of glycerol concentrations on the characteristics of cellulose films from cattail (Typha angustifolia L.) Flowers,” Polymers (Basel), vol. 15, no. 23, p. 4535, Nov. 2023, doi: 10.3390/polym15234535.
[43] Rahmi, Julinawati, M. Nina, H. Fathana, and M. Iqhrammullah, “Preparation and characterization of new magnetic chitosan-glycine-PEGDE (Fe3O4/Ch-G-P) beads for aqueous Cd(II) removal,” Journal of Water Process Engineering, vol. 45, Feb. 2022, Art. no. 102493, doi: 10.1016/j.jwpe.2021.102493.
[44] W. Jung, D. Savithri, R. Sharma-Shivappa, and P. Kolar, “Changes in lignin chemistry of switchgrass due to delignification by sodium hydroxide pretreatment,” Energies, vol. 11, no. 2, p. 376, Feb. 2018, doi: 10.3390/EN11020376.
[45] A. A. Modenbach, “Effects of sodium hydroxide pretreatment on structural components of biomass,” Transactions of the ASABE, vol. 57, no. 4, pp. 1187–1198, Aug. 2014, doi: 10.13031/ trans.57.10046.
[46] S. Rezania, M. F. M. Din, S. E. Mohamad, J. Sohaili, S. M. Taib, M. B. M. Yusof, H. Kamyab, N. Darajeh, and A. Ahsan, “Review on pretreatment methods and ethanol production from cellulosic water hyacinth,” BioResources, vol. 12, Art. no. 1, pp. 2108–2124, Jan. 2017, doi: 10.15376/biores.12.1.Rezania.
[47] R. M. Salim, J. Asik, and M. S. Sarjadi, “Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark,” Wood Science of Technology, vol. 55, no. 2, pp. 295–313, 2021, doi: 10.1007/s00226-020-01258-2.
[48] A. E. Ghali, I. B. Marzoug, M. Hassen, V. Baouab, and M. S. Roudesli, “Separation and characterization of new cellulosic fibres from the Juncus Acutus L. plant,” BioResources, vol. 7, no. 2, pp. 2002–2018, Mar. 2012.
[49] Z. Belouadah, A. Ati, and M. Rokbi, “Characterization of new natural cellulosic fiber from Lygeum spartum L.,” Carbohydrate polymer, vol. 134, pp. 429–437, Dec. 2015, doi: 10.1016/J.CARBPOL.2015.08.024.
[50] M. P. Gundupalli, Y.-S. Cheng, S. Chuetor, D. Bhattacharyya, and M. Sriariyanun, “Effect of dewaxing on saccharification and ethanol production from different lignocellulosic biomass,” Bioresource Technology, vol. 339, 2021, Art. no. 125596, doi: 10.1016/j.biortech. 2021.1255966.
[51] N. S. Syazwani, M. N. E. Efzan, C. K. Kok, and M. J. Nurhidayatullaili, “Analysis on extracted jute cellulose nanofibers by Fourier transform infrared and X-Ray diffraction,” Journal of Building Engineering, vol. 48, 2022, Art. no. 103744, doi: 10.1016/j.jobe.2021.103744.
[52] Q. Wu, J. Xu, S. Zhu, Y. Kuang, B. Wang, and W. Gao, “Crystalline stability of cellulose III nanocrystals in the hydrothermal treatment and NaOH solution,” Carbohydrate Polymer, vol. 249, 2020, Art. no. 116827, doi: 10.1016/ j.carbpol.2020.116827.
[53] P. Manimaran, S. P. Saravanan, M. R. Sanjay, S. Siengchin, M. Jawaid, and A. Khan, “Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures,” Journal of Materials Research and Technology, vol. 8, no. 2, pp. 1952–1963, 2019, doi: 10.1016/j.jmrt.2018.12.015.
[54] R. Rahmi, L. Lelifajri, M. Iqbal, F. Fathurahmi, J. Jalaluddin, R. Sembiring, M. Farida, and M. Iqhramullah, “Preparation, characterization and adsorption study of PEDGE-cross-linked magnetic chitosan (PEDGE-MCh) microspheres for Cd2+ removal,” Arabian Journal of Science and Engineering, vol. 48, no. 1. pp. 159–167 2022, doi: 10.1007/s13369-022-06786-6.
[55] V. A. Barbash, O. V. Yaschenko, S. V. Alushkin, A. S. Kondratyuk, O. Y. Posudievsky, and V. G. Koshechko, “The effect of mechanochemical treatment of the cellulose on characteristics of nanocellulose films,” Nanoscale Research Letters, vol. 11, no. 1, p. 410, Dec. 2016, doi: 10.1186/ s11671-016-1632-1.
[56] W. Li, J. Yue, and S. Liu, “Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites,” Ultrasonics Sonochemistry, vol. 19, no. 3, pp. 479–485, May 2012, doi: 10.1016/ j.ultsonch.2011.11.007.
[57] R. W. N. Nugroho, B. L. Tardy, S. M. Eldin, R. A. Ilyas, M. Mahardika, and N. Masruchin, “Controlling the critical parameters of ultrasonication to affect the dispersion state, isolation, and chiral nematic assembly of cellulose nanocrystals,” Ultrasond Sonochemistry, vol. 99, Oct. 2023, Art. no. 106581, doi: 10.1016/ j.ultsonch.2023.106581.
[58] J. I. Morán, V. A. Alvarez, V. P. Cyras, and A. Vázquez, “Extraction of cellulose and preparation of nanocellulose from sisal fibers,” Cellulose, vol. 15, no. 1, pp. 149–159, 2008, doi: 10.1007/s10570-007-9145-9.
[59] J. A. García-Ramón, R. Carmona-García, M. Valera-Zaragoza, A. Aparicio-Saguilán, L. A. Bello-Pérez, A. Aguirre-Cruz, and J. Alvarez-Ramirez, “Morphological, barrier, and mechanical properties of banana starch films reinforced with cellulose nanoparticles from plantain rachis,” International Journal of Biological Macromolecule, vol. 187, pp. 35–42, Sep. 2021, doi: 10.1016/j.ijbiomac.2021.07.112.
[60] P. Cazón, M. Vázquez, and G. Velazquez, “Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light-barrier properties and transparency,” Carbohydrate Polymer, vol. 195, pp. 432–443, Sep. 2018, doi: 10.1016/j.carbpol.2018.04.120.
[61] P. Liu, W. Gao, X. Zhang, B. Wang, F. Zou, B. Yu, L. Lu, Y. Fang, Z. Wu, C. Yuan, and B. Cui, “Effects of ultrasonication on the properties of maize starch/stearic acid/ sodium carboxymethyl cellulose composite film,” Ultrasond Sonochemistry, vol. 72, 2021, Art. no. 105447, doi: 10.1016/ j.ultsonch.2020.105447.
[62] Z. Fang, H. Zhu, Y. Yuan, D. Ha, S. Zhu, C. Preston, Q. Chen, Y. Li, X. Han, S. Lee, G. Chen, T. Li, J. Munday, J. Huang, and L. Hu, “Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells,” Nano Letter, vol. 14, no. 2, pp. 765–773, Feb. 2014, doi: 10.1021/nl404101p
[63] E. Csiszar, P. Kalic, A. Kobol, and E. D. P. Ferreira, “The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films,” Ultrasonics Sonochemistry, vol. 31, pp. 473–480, Jul. 2016, doi: 10.1016/j.ultsonch.2016. 01.028.
[64] O. M. Atta, S. Manan, A. A. Q. Ahmed, M. F. Awad, M. Ul-Islam, F. Subhan, M. W. Ullah, and G. Yang, “Development and characterization of yeast-incorporated antimicrobial cellulose biofilms for edible food packaging application,” Polymers, vol. 13, no. 14, p. 2310, Jul. 2021, doi: 10.3390/POLYM13142310.
[65] J. J. Benitez, P. Florido-Moreno, J. M. Porras-Vázquez, G. Tedeschi, A. Athanassiou, J. A. Heredia-Guerrero, and S. Guzman-Puyol, “Transparent, plasticized cellulose-glycerol bioplastics for food packaging applications,” International of Journal Biological and Macromolecules, vol. 273, Jul. 2024, Art. no. 132956, doi: 10.1016/j.ijbiomac.2024.132956.
[66] S. Lau, A. W. M. Kahar, and M. D. Yusrina, “Effect of glycerol as plasticizer on the tensile properties of chitosan/microcrystalline cellulose films,” AIP Conference Proceedings, 2021, Art. no. 020204, doi: 10.1063/5.0044825.
[67] W. G. Sganzerla, G. B. Rosa, A. L. A. Ferreira, C. G. da Rosa, P. C. Beling, L. O. Xavier C. M. Hansen, J. P. Ferrareze, M. R. Nunes, P. L. M. Barreto, and A. P. V. de Lima, “Bioactive food packaging based on starch, citric pectin and functionalized with Acca sellowiana waste by-product: Characterization and application in the postharvest conservation of apple,” International Journal of Biological Macromolecules, vol. 147, pp. 295–303, Mar. 2020, doi: 10.1016/ j.ijbiomac.2020.01.074.
[68] S. Agustin, M. N. Cahyanto, E. T. Wahyuni, and Supriyadi, “Effect of glycerol plasticizer on the structure and characteristics of bacterial cellulose-based biocomposite films,” IOP Conference Series Earth and Environmental Science, vol. 1377, no. 1, 2024, Art. no. 012046, doi: 10.1088/1755-1315/1377/1/012046.
[69] S. M. Emadian, T. T. Onay, and B. Demirel, “Biodegradation of bioplastics in natural environments.,” Waste Management, vol. 59, pp. 526–536, Oct. 2016, doi: 10.1016/j.wasman. 2016.10.006.
[70] P. Cazón, G. Velazquez, and M. Vázquez, “Novel composite films from regenerated cellulose-glycerol-polyvinyl alcohol: Mechanical and barrier properties,” Food Hydrocolloid, vol. 89, pp. 481–491, Apr. 2019, doi: 10.1016/ j.foodhyd.2018.11.012.
DOI: 10.14416/j.asep.2025.03.006
Refbacks
- There are currently no refbacks.