Optimizing Methyl Orange Degradation via Electro-Fenton with Copper Foam Cathode: A Comparative Approach Using Iron Waste vs. Iron Salts and Exploring Catalyst and Cathode Durability
Abstract
Keywords
[1] S. Yadav and S. Kamsonlian, “Progress on the development of techniques to remove contaminants from wastewater: A review,” Applied Science and Engineering Progress, vol. 16, no. 3, Feb. 2023, Art. no. 6729, doi: 10.14416/j.asep.2023.02.001.
[2] C. O. Okafor, U. I. Ude, F. N. Okoh, and B. O. Eromonsele, “Safe drinking water: The need and challenges in developing countries,” in Water Quality-New Perspectives. London, UK: IntechOpen, 2024, doi: 10.5772/intechopen.108497.
[3] UNESCO. “The United Nations World Water Development Report.” unesco.org. https://www.unesco.org/reports/wwdr/2021/en (accessed Jan. 13, 2025).
[4] F. and A. O. of the U. Nation. “The State of Food and Agriculture 2020: Overcoming Water Challenges in Agriculture.” fao.org. http://www.fao.org/state-of-food-agriculture/2020 (accessed Jan. 13, 2025).
[5] R. Al-Tohamy, S. S. Ali, F. Li, K. M. Okasha, Y. A.-G. Mahmoud, T. Alsamahy, H. Jiao, Y. Fu, and J. Sun, “A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety,” Ecotoxicology and Environmental Safety, vol. 231, Feb. 2022, Art. no. 113160, doi: 10.1016/j.ecoenv.2021.113160.
[6] M. M. El-Sadaawy and N. S. Agib, “Removal of textile dyes by ecofriendly aquatic plants from wastewater: A review on plants species, mechanisms, and perspectives,” Blue Economy, vol. 2, no. 2, Jul. 2024, doi: 10.57241/2805-2994.1023.
[7] P. Kiattisaksiri, N. Petmark, and T. Ratpukdi, “Combination of coagulation and VUV+H2O2 for the treatment of color and organic matter in treated effluent wastewater from a sugar factory,” Applied Science and Engineering Progress, vol. 16, no. 4, 2022, Art. no. 6192, doi: 10.14416/j.asep.2022.08.002.
[8] H. J. Nsaif, N. S. Majeed, and R. H. Salman, “Preparation of nano SnO2-Sb2O3 composite electrode by cathodic deposition for the elimination of phenol by Sonoelectrochemical oxidation,” Polish Journal of Chemical Technology, vol. 26, no. 3, pp. 21–28, Sep. 2024, doi: 10.2478/pjct-2024-0026.
[9] A. B. D. Nandiyanto, S. N. Hofifah, H. T. Inayah, I. F. Yani, S. R. Putri, S. S. Apriliani, S. Anggraeni, D. Usdiyana and A. Rahmat, “Adsorption isotherm of carbon microparticles prepared from pumpkin (cucurbita maxima) seeds for dye removal,” Iraqi Journal of Science, vol. 62, no. 5, pp. 1404–1414, May 2021, doi: 10.24996/ijs.2021.62.5.2.
[10] M. Abewaa, E. Adino, and A. Mengistu, “Preparation of Rumex abyssinicus based biosorbent for the removal of methyl orange from aqueous solution,” Heliyon, vol. 9, no. 12, Dec. 2023, Art. no. e22447, doi: 10.1016/j.heliyon.2023.e22447.
[11] S. Yadav, K. S. Tiwari, C. Gupta, M. K. Tiwari, A. Khan, and S. P. Sonkar, “A brief review on natural dyes, pigments: Recent advances and future perspectives,” Results in Chemistry, vol. 5, Jan. 2023, Art. no. 100733, doi: 10.1016/j.rechem.2022.100733.
[12] W. W. Leow, A. Duke, S. K. E. Ab Rahim, Q. H. Ng, P. Y. Hoo, A. M. Nasib, M. Q. Z. A. Suffin and N. S. Abdullah, “Facile synthesis of hybrid-polyoxometalates nanocomposite for degradation of cationic and anionic dyes in water treatment,” Applied Science and Engineering Progress, vol. 18, no. 1, Jul. 2024, Art. no. 7485, doi: 10.14416/j.asep.2024.07.014.
[13] A. Kumar, U. Dixit, K. Singh, S. Prakash Gupta, and M. S. Jamal Beg, “Structure and properties of dyes and pigments,” in Dyes and Pigments- Novel Applications and Waste Treatment. London, UK: IntechOpen, 2021, doi: 10.5772/intechopen.97104.
[14] A. G. Saleem and S. M. Al-Jubouri, “Efficient separation of organic dyes using polyvinylidene fluoride/polyethylene glycol-tin oxide (PVDF/PEG-SnO2) nanoparticles ultrafiltration membrane,” Applied Science and Engineering Progress, vol. 17, no. 4, 2024, Art. no. 7523, doi: 10.14416/j.asep.2024.08.001.
[15] M. A. Mohammed, W. O. Noori, and H. A. Sabbar, “Application of emulsion liquid membrane process for cationic dye extraction,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 21, no. 3, pp. 39–44, Sep. 2020, doi: 10.31699/IJCPE.2020.3.5.
[16] R. H. Salman, E. M. Khudhair, K. M. Abed, and A. S. Abbas, “Removal of E133 brilliant blue dye from artificial wastewater by electrocoagulation using cans waste as electrodes,” Environmental Progress & Sustainable Energy, vol. 43, no. 2, Mar. 2024, Art. no. e14292, doi: 10.1002/ep.14292.
[17] N. A. Mohammed, A. I. Alwared, and M. S. Salman, “Photocatalytic degradation of reactive yellow dye in wastewater using H2O2/TiO2/UV technique,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 21, no. 1, pp. 15–21, Mar. 2020, doi: 10.31699/IJCPE.2020.1.3.
[18] S. K. A. Barno, H. J. Mohamed, S. M. Saeed, M. J. Al-Ani, and A. S. Abbas, “Prepared 13X zeolite as a promising adsorbent for the removal of brilliant blue dye from wastewater,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 22, no. 2, pp. 1–6, Jun. 2021, doi: 10.31699/IJCPE.2021.2.1.
[19] Z. M. Hameed and R. H. Salman, “Elimination of methyl orange dye with three dimensional electro-fenton and sono-electro-fenton systems utilizing copper foam and activated carbon,” Ecological Engineering & Environmental Technology, vol. 25, no. 10, pp. 44–59, Oct. 2024, doi: 10.12912/27197050/191199.
[20] T. M. Tamer, R. Abbas, W. A. Sadik, A. M. Omer, M. M. Abd-Ellatif, and M. S. Mohy-Eldin, “Development of novel amino-ethyl chitosan hydrogel for the removal of methyl orange azo dye model,” Scientific Reports, vol. 14, no. 1, p. 1284, Jan. 2024, doi: 10.1038/s41598-024-51538-1.
[21] M. A. B. Aissa, M. Khairy, M. E. Khalifa, E. A. Abdelrahman, N. Raza, E. M. Masoud, and A. Modwi, “Facile synthesis of TiO2@ZnO nanoparticles for enhanced removal of methyl orange and indigo carmine dyes: Adsorption, kinetics,” Heliyon, vol. 10, no. 10, p. e31351, May 2024, doi: 10.1016/j.heliyon.2024.e31351.
[22] M. A. Mohammed, I. S. Al-Bayati, A. A. Alobaidy, B. I. Waisi, and N. Majeed, “Investigation the efficiency of emulsion liquid membrane process for malachite green dye separation from water,” Desalination and Water Treatment, vol. 307, pp. 190–195, Nov. 2023, doi: 10.5004/dwt.2023.29903.
[23] I. A. Abed and B. I. Waisi, “Preparation and characterization of PES flat sheet membrane embedded with PEG for dye filtration application,” Iraqi Journal of Applied Physics, vol. 20, no. 2, pp. 179–186, 2024.
[24] A. E. Alprol, M. Khedawy, M. Ashour, and W. M. Thabet, “Arthrospira platensis nanoparticle-based approach for efficient removal of methyl orange dye from aqueous solutions: isotherm, kinetic, and thermodynamic analysis,” Biomass Conversion and Biorefinery, vol. 14, pp. 30279–30296, Oct. 2023, doi: 10.1007/s13399-023-04844-z.
[25] S. H. Abbas, Y. M. Younis, K. H. Rashid, and A. A. Khadom, “Removal of methyl orange dye from simulated wastewater by electrocoagulation technique using Taguchi method: kinetics and optimization approaches,” Reaction Kinetics, Mechanisms and Catalysis, vol. 135, no. 5, pp. 2663–2679, Oct. 2022, doi: 10.1007/s11144-022-02269-9.
[26] N. A. A. Mohammed, A. I. Alwared, and M. S. Salman, “Decolorization of reactive yellow dye by advanced oxidation using continuous reactors,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 21, no. 2, pp. 1–6, Jun. 2020, doi: 10.31699/IJCPE.2020.2.1.
[27] N. S. Eroi, A. S. Ello, D. Diabaté, and K. R. Koffi, “Kinetic study of the removal of methyl orange dye by coupling WO3/H2O2,” Journal of Chemistry, vol. 2022, pp. 1–8, Sep. 2022, doi: 10.1155/2022/8633545.
[28] A. S. Adday and S. M. Al-Jubouri, “Photocatalytic oxidative removal of the organic pollutant from wastewater using recyclable Ag2O@CRA heterojunction photocatalyst,” Case Studies in Chemical and Environmental Engineering, vol. 10, Dec. 2024, Art. no. 100852, doi: 10.1016/j.cscee.2024.100852.
[29] F. E. Titchou, H. Zazou, H. Afanga, J. E. Gaayda, R. A. Akbour, P. V. Nidheesh, and M. Hamdani, “Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes,” Chemical Engineering and Processing - Process Intensification, vol. 169, Dec. 2021, Art. no. 108631, doi: 10.1016/j.cep.2021.108631.
[30] G. V. Serban, V. I. Iancu, C. Dinu, A. Tenea, N. Vasilache, I. Cristea, M. Niculescu, I. Ionescu, and F. L. Chiriac, “Removal efficiency and adsorption kinetics of methyl orange from wastewater by commercial activated carbon,” Sustainability, vol. 15, no. 17, Art. no. 12939, Aug. 2023, doi: 10.3390/su151712939.
[31] D. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, M. Zhang, L. Qin, S. Liu, and L. Yang, “Critical review of advanced oxidation processes in organic wastewater treatment,” Chemosphere, vol. 275, Jul. 2021, Art. no. 130104, doi: 10.1016/j.chemosphere.2021.130104.
[32] L. Song, C. Liu, L. Liang, Y. Ma, X. Wang, J. Ma, Z. Li, and S. Yang, “Fabrication of PbO2/PVDF/CC composite and employment for the removal of methyl orange,” Polymers (Basel), vol. 15, no. 6, p. 1462, Mar. 2023, doi: 10.3390/polym15061462.
[33] C. F. Carolin, P. S. Kumar, and G. J. Joshiba, “Sustainable approach to decolourize methyl orange dye from aqueous solution using novel bacterial strain and its metabolites characterization,” Clean Technologies and Environmental Policy, vol. 23, no. 1, pp. 173–181, Jan. 2021, doi: 10.1007/s10098-020-01934-8.
[34] A. Latha, R. Ganesan, A. V. S. L. Sai Bharadwaj, and P. Barmavatu, “An experimental investigation of textile dyeing wastewater using modified electro Fenton process with optimization by response surface methodology,” Environmental Quality Management, vol. 33, no. 3, pp. 421–432, Mar. 2024, doi: 10.1002/tqem.22135.
[35] S. Ben Kacem, D. Clematis, S. C. Elaoud, and M. Panizza, “Response surface methodology for low-energy consumption electro-Fenton process for xanthene dye electrochemical degradation,” Journal of Applied Electrochemistry, vol. 54, no. 9, pp. 2095–2110, Sep. 2024, doi: 10.1007/s10800-024-02087-y.
[36] H. Olvera-Vargas, N. Gore-Datar, O. Garcia-Rodriguez, S. Mutnuri, and O. Lefebvre, “Electro-Fenton treatment of real pharmaceutical wastewater paired with a BDD anode: Reaction mechanisms and respective contribution of homogeneous and hetrogeneous OH,” Chemical Engineering Journal, vol. 404, Jan. 2021, Art. no. 126524, doi: 10.1016/j.cej.2020.126524.
[37] G. D. Değermenci and N. Değermenci, “Electrochemical hydrogen peroxide generation and removal of moxifloxacin by electro-fenton process,” Black Sea Journal of Engineering and Science, vol. 7, no. 3, pp. 539–546, May 2024, doi: 10.34248/bsengineering.1461577.
[38] A. Limper, M. Mohseni, R. Keller, J. Linkhorst, J. Klankermayer, and M. Wessling, “An electrode with two-level porosity for electro-Fenton: Carbon nanofiber-functionalized macroporous nickel foam,” Advanced Sustainable Systems, vol. 7, no. 3, Mar. 2023, doi: 10.1002/adsu.202200408.
[39] B. Ma, W. Lv, J. Li, C. Yang, Q. Tang, and D. Wang, “Promotion removal of aniline with electro-Fenton processes utilizing carbon nanotube 3D morphology modification of an Ag-loaded copper foam cathode,” Journal of Water Process Engineering, vol. 43, Oct. 2021, Art. no. 102295, doi: 10.1016/j.jwpe.2021.102295.
[40] J. Li, D. Song, K. Du, Z. Wang, and C. Zhao, “Performance of graphite felt as a cathode and anode in the electro-Fenton process,” Royal Society of Chemistry Advances, vol. 9, no. 66, pp. 38345–38354, 2019, doi: 10.1039/C9RA07525A.
[41] M. Vainoris, A. Nicolenco, N. Tsyntsaru, E. Podlaha-Murphy, F. Alcaide, and H. Cesiulis, “Electrodeposited Fe on Cu foam as advanced fenton reagent for catalytic mineralization of methyl orange,” Frontiers Chemsitry, vol. 10, Sep. 2022, doi: 10.3389/fchem.2022.977980.
[42] E. Bocos, O. Iglesias, M. Pazos, and M. Ángeles Sanromán, “Nickel foam a suitable alternative to increase the generation of Fenton’s reagents,” Process Safety and Environmental Protection, vol. 101, pp. 34–44, May 2016, doi: 10.1016/j.psep.2015.04.011.
[43] Y. Zheng, S. Qiu, F. Deng, Y. Zhu, G. Li, and F. Ma, “Three-dimensional electro-Fenton system with iron foam as particle electrode for folic acid wastewater pretreatment,” Separation and Purification Technology, vol. 224, pp. 463–474, Oct. 2019, doi: 10.1016/j.seppur.2019.05.054.
[44] G. Li, S. Qiu, Y. Zhu, F. Deng, and F. Ma, “Utilization of response surface modeling to optimize hydrogen peroxide and hydroxyl radicals generation by electro-Fenton with copper-foam as cathode,” Chinese Journal of Environmental Engineering, vol. 12, no. 1, pp. 93–101, Jan. 2018, doi: 10.12030/j.cjee.201706051.
[45] T. Qian, S. Juan, R. Xiaolei, Y. Chunwei and W. Dong, “Comparative study on the electro-Fenton-like oxidation of p-nitrophenol with nickel and copper foam cathodes,” Chemical Industry and Engineering Progress, vol. 36, no. 7, pp. 2653–2659, 2017, doi: 10.16085/j.issn.1000-6613.2016-2070.
[46] R. N. Abbas, “Advanced electro-oxidation of phenol in refinery wastewater using graphite and carbon fiber electrodes modified with PbO2 and graphene,” Ph.D. dissertation, Depattment of Chemical Engineering, Baghdad University, Baghdad, Iraq, 2022.
[47] P. Brosler, A. V. Girão, R. F. Silva, J. Tedim, and F. J. Oliveira, “Electrochemical advanced oxidation processes using diamond technology: A critical review,” Environments, vol. 10, no. 2, p. 15, Jan. 2023, doi: 10.3390/environments 10020015.
[48] P. V. Nidheesh, H. Olvera-Vargas, N. Oturan, and M. A. Oturan, “Heterogeneous electro-Fenton process: Principles and applications,” in Electro-Fenton Process, vol. 61, M. Zhou, M. A. Oturan, and I. Sirés, Eds. Singapore: Springer, pp. 85–110, 2017. doi: 10.1007/698_2017_72.
[49] H. H. Thwaini and R. H. Salman, “Phenol removal by electro-Fenton process using a 3D electrode with iron foam as particles and carbon fibre modified with graphene,” Journal of Electrochemical Science and Engineering, vol.13, no. 3, Jun. 2023, doi: 10.5599/jese.1806.
[50] A. Shokri, B. Nasernejad, and M. Sanavi Fard, “Challenges and future roadmaps in heterogeneous electro-Fenton process for wastewater treatment,” Water, Air, and Soil Pollution, vol. 234, no. 3, p. 153, Mar. 2023, doi: 10.1007/s11270-023-06139-5.
[51] P. Fedorko, A. Pribulová, J. Petrík, P. Blaško, and P. Futáš, “The impact of iron casting in cupola furnaces on the environment,” in MM 2023, Basel, Switzerland: MDPI, Feb. 2024, vol. 64, p. 8, doi: 10.3390/engproc2024064008.
[52] M. Priyadarshini, A. Ahmad, and M. M. Ghangrekar, “Efficient upcycling of iron scrap and waste polyethylene terephthalate plastic into Fe3O4@C incorporated MIL-53(Fe) as a novel electro-Fenton catalyst for the degradation of salicylic acid,” Environmental Pollution, vol. 322, Apr. 2023, Art. no. 121242, doi: 10.1016/ j.envpol.2023.121242.
[53] A. Saber, S. Mortazavian, D. E. James, and H. Hasheminejad, “Optimization of collaborative photo-Fenton oxidation and coagulation for the treatment of petroleum refinery wastewater with scrap iron,” Water, Air, and Soil Pollution, vol. 228, no. 8, p. 312, Aug. 2017, doi: 10.1007/ s11270-017-3494-2.
[54] N. Nippatla and L. Philip, “Electrochemical process employing scrap metal waste as electrodes for dye removal,” Journal of Environmental Management, vol. 273, Nov. 2020, doi: 10.1016/j.jenvman.2020.111039.
[55] C. Xia and X. Shen, “Analysis of factors influencing on electro-Fenton and research on combination technology (II): A review,” Environmental Science and Pollution Research, vol. 31, no. 34, pp. 46910–46948, Jul. 2024, doi: 10.1007/s11356-024-34159-z.
[56] H. He and Z. Zhou, “Electro-Fenton process for water and wastewater treatment,” Critical Reviews In Environmental Science and Technology, vol. 47, no. 21, pp. 2100–2131, Nov. 2017, doi: 10.1080/10643389.2017.1405673.
[57] M. I. Syauqi, A. T. Cahyani, Y. M. T. A. Putri, and P. K. Jiwanti, “Electroreduction of carbon dioxide (CO2) with flow cell system using tin-modified copper foam electrode,” Environmental and Materials, vol. 1, no. 2, Dec. 2023, doi: 10.61511/eam.v1i2.2023.363.
[58] M. M. Jiad and A. H. Abbar, “Efficient wastewater treatment in petroleum refineries: Hybrid electro-fenton and photocatalysis (UV/ZnO) process,” Chemical Engineering Research and Design, vol. 200, pp. 431–444, Dec. 2023, doi: 10.1016/j.cherd.2023.10.050.
[59] M. M. Jiad and A. H. Abbar, “Treatment of petroleum refinery wastewater by electrofenton process using a low cost porous graphite air-diffusion cathode with a novel design,” Chemical Engineering Research and Design, vol. 193, pp. 207–221, May 2023, doi: 10.1016/j.cherd.2023.03.021.
[60] Z. Benredjem, K. Barbari, I. Chaabna , S. Saaidia, A. Djemel, R. Delimi, S. Douas and K. Bakhouche, “Comparative investigation on the removal of methyl orange from aqueous solution using three different advanced oxidation processes,” International Journal of Chemical Reactor Engineering, vol. 19, no. 6, pp. 597–604, Jun. 2021, doi: 10.1515/ijcre-2020-0243.
[61] H. H. Thawini, R. H. Salman, and W. S. Abdul-Majeed, “Performance of electro-Fenton process for phenol degradation using nickel foam as a cathode,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 24, no. 3, pp. 13–25, 2023, doi: 10.31699/ijcpe.2023.3.2.
[62] S. Midassi, A. Bedoui, and N. Bensalah, “Efficient degradation of chloroquine drug by electro-Fenton oxidation: Effects of operating conditions and degradation mechanism,” Chemosphere, vol. 260, p. 127558, Dec. 2020, doi: 10.1016/j.chemosphere.2020.127558.
[63] A. Adachi, F. E. Ouadrhiri, M. Kara, I. E. Manssouri, A. Assouguem, M. H. Almutairi, R. Bayram, H. R. H. Mohamed, I. Peluso, N. Eloutassi, and A. Lahkimi, “Decolorization and degradation of methyl orange azo dye in aqueous solution by the electro-Fenton process: application of optimization,” Catalysts, vol. 12, no. 6, p. 665, Jun. 2022, doi: 10.3390/ catal12060665.
[64] Y. Zou, H. Qi, and Z. Sun, “In-situ catalytic degradation of sulfamethoxazole with efficient CuCo–O@CNTs/NF cathode in a neutral electro-Fenton-like system,” Chemosphere, vol. 296, Jun. 2022, Art. no. 134072, doi: 10.1016/ j.chemosphere.2022.134072.
[65] S. Zhong, Z. Zhu, P. Zhou, L. Shi, X. Duan, B. Lai, and S. Wang, “FeOCl nanoparticles loaded on to oxygen-enriched carbon nanotubes and nickel-foam-based cathodes for the electro-Fenton degradation of pollutants,” American Chemical Society Applied Nano Materials, vol. 5, no. 9, pp. 12095–12106, Sep. 2022, doi: 10.1021/acsanm.2c01413.
[66] National Research Council (US) Committee on Copper in Drinking Water, Copper in Drinking Water. Washington DC: National Academies Press, 2000.
[67] S. M. Al-Jubouri, R. H. Salman, E. M. Khudhair, A. S. Abbas, A. F. Al-Alawy, S. Y. Khudhair, M. H. Salih, H. A. Hassan and A. Alfutimie, “Multicomponent equilibrium isotherms and kinetics study of heavy metals removal from aqueous solutions using electrocoagulation combined with mordenite zeolite and ultrasonication,” Applied Science and Engineering Progress, vol. 18, no. 1, 2025, Art. no. 7484 doi: 10.14416/j.asep.2024.07.011.
[68] S. Sultana, M. R. Choudhury, A. R. Bakr, N. Anwar, and M. S. Rahaman, “Effectiveness of electro-oxidation and electro-Fenton processes in removal of organic matter from high-strength brewery wastewater,” Journal of Applied Electrochemistry, vol. 48, no. 5, pp. 519–528, May 2018, doi: 10.1007/s10800-018-1185-3.
[69] C. Martínez-Sánchez, I. Robles, and L. A. Godínez, “Review of recent developments in electrochemical advanced oxidation processes: application to remove dyes, pharmaceuticals, and pesticides,” International journal of Environmental Science and Technology, vol. 19, no. 12, pp. 12611–12678, Dec. 2022, doi: 10.1007/s13762-021-03762-9.
[70] X. Wang, J. Zhao, C. Song, X. Shi, and H. Du, “An eco-friendly iron cathode electro-Fenton system coupled with a pH-regulation electrolysis cell for p-nitrophenol degradation,” Frontiers Chemsitry, vol. 9, Jan. 2022, doi: 10.3389/ fchem.2021.837761.
[71] Z. Heidari, R. Pelalak, R. Alizadeh, N. Oturan, S. Shirazian, and M. A. Oturan, “Application of mineral iron-based natural catalysts in electro-Fenton process: A comparative study,” Catalysts, vol. 11, no. 1, p. 57, Jan. 2021, doi: 10.3390/catal11010057.
[72] N. Rattanachueskul, P. Onsri, W. Watcharin, A. Makarasen, S. Techasakul, D. Dechtrirat and L. Chuenchom, “Waste para-rubber wood ash and iron scrap for the sustainable preparation of magnetic Fenton catalyst for efficient degradation of tetracycline,” Arabian Journal of Chemistry, vol. 17, no. 6, Jun. 2024, Art. no. 105791, doi: 10.1016/j.arabjc.2024.105791.
[73] S. M. H. Kazmi, J. Du, X. Zhao, M. Faheem, A. Hassan, M. Yousuf, H. Zheng, and C. Yi, “Transforming waste to purity: 3D electro-Fenton process boosted with pistachio shell-derived iron-biochar electrode for methyl violet 2B dye catalytic removal,” Desalination and Water Treatment, vol. 320, Oct. 2024, Art. no. 100845, doi: 10.1016/j.dwt.2024.100845.
[74] N. S. Inchaurrondo, F. Bocero, C. P. Ramos, T. Freije, and L. A. Fasce, “Enhanced mineralization of bisphenol A by electric arc furnace slag: Fenton-like oxidation,” Applied Catalysis O: Open, vol. 193, Aug. 2024, Art. no. 206971, doi: 10.1016/j.apcato.2024.206971.
[75] G. Khajouei, S. Mortazavian, A. Saber, N. Z. Meymian, and H. Hasheminejad, “Treatment of composting leachate using electro-Fenton process with scrap iron plates as electrodes,” International journal of Environmental Science and Technology, vol. 16, no. 8, pp. 4133–4142, Aug. 2019, doi: 10.1007/s13762-018-2057-4.
[76] S. Ammar, M. A. Oturan, L. Labiadh, A. Guersalli, R. Abdelhedi, N. Outrun, and E. Brillas, “Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst,” Water Research, vol. 74, pp. 77–87, May 2015, doi: 10.1016/j.watres.2015.02.006.
[77] M. A. Oturan and J.-J. Aaron, “Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review,” Critical Reviews in Environmental Science and Technology, vol. 44, no. 23, pp. 2577–2641, Dec. 2014, doi: 10.1080/10643389. 2013.829765.
[78] A. Omri, W. Hamza, and M. Benzina, “Photo-Fenton oxidation and mineralization of methyl orange using Fe-sand as effective heterogeneous catalyst,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 393, Apr. 2020, Art. no. 112444, doi: 10.1016/j.jphotochem. 2020.112444.
[79] A. M. G. Domacena, C. L. E. Aquino, and M. D. L. Balela, “Photo-Fenton degradation of methyl orange using hematite (α-Fe2O3) of various morphologies,” Materials Today: Proceedings, vol. 22, pp. 248–254, Feb. 2020, doi: 10.1016/ j.matpr.2019.08.095.
[80] R. Salazar, S. Garcia-Segura, M. S. Ureta-Zañartu, and E. Brillas, “Degradation of disperse azo dyes from waters by solar photoelectro-Fenton,” Electrochimica Acta, vol. 56, no. 18, pp. 6371–6379, Jul. 2011, doi: 10.1016/j.electacta. 2011.05.021.
[81] A. Kuleyin, A. Gök, and F. Akbal, “Treatment of textile industry wastewater by electro-Fenton process using graphite electrodes in batch and continuous mode,” Journal of Environmental Chemical Engineering, vol. 9, no. 1, p. 104782, Feb. 2021, doi: 10.1016/j.jece.2020.104782.
[82] A. S. Naje, I. S. Samaka, H. M. Zwain, and M. A. Ajeel, “Photovoltaic cell electro-Fenton oxidation process for treatment of organic content in methyl orange wastewater,” Journal of Sustainability Science and Management, vol. 16, no. 4, pp. 53–63, Jun. 2021, doi: 10.46754/ jssm.2021.06.005.
[83] D. Clematis and M. Panizza, “Electro-Fenton, solar photoelectro-Fenton and UVA photoelectro-Fenton: Degradation of erythrosine B dye solution,” Chemosphere, vol. 270, May 2021, Art. no. 129480, doi: 10.1016/j. chemosphere. 2020.129480.DOI: 10.14416/j.asep.2025.05.002
Refbacks
- There are currently no refbacks.