Page Header Logo Applied Science and Engineering Progress

Solid-State Synthesis of Green Mussels (Perna viridis)-Derived Hydroxyapatite and Perovskite Nanocomposite for the Photo-catalytic Degradation of Acetaminophen

Keren Keziah Flores Tangarorang, Fitzpatrick Devera Schmitt, Jexhee Darrel Clemente Sy, Marie Danielle Leopardas Ahongon, Piolo Miguel Vergara Garcia, Jarlie Rosario Clemeña, Rugi Vicente Del Castillo Rubi, Carlou Siga-an Eguico, Allan Nana Soriano, Joseph Rempillo Ortenero, Vergel Castaneda Bungay

Abstract


Acetaminophen (ACT) emerged as the second most prevalent pharmaceutical contaminant in Philippine waters and poses environmental risks due to overuse. This study investigates the efficacy of hydroxyapatite-calcium titanate (HAp-CaTiO3) nanocomposite derived from waste Perna viridis (green mussel) shells for the photocatalytic degradation of ACT. HAp and CaTiO3 were prepared via coprecipitation and solid-state methods, respectively, and combined into a nanocomposite. The photocatalysts were characterized using SEM-EDX, XRD, UV-Vis and FTIR. Characterization confirmed the formation of a heterojunction with nanostructures and functional groups retained. The nanocomposite achieved a 96.30% ACT degradation efficiency. This approach highlights the potential of waste-derived materials for sustainable environmental remediation.

Keywords



[1]    C. A. Aguilar et al., “Effect of kinetics on the photocatalytic degradation of acetaminophen and the distribution of major intermediate with anatase-Ag synthesized by sol gel under visible irradiation,” Frontiers in Environmental Science, vol. 10, Oct. 2022, doi: 10.3389/fenvs.2022. 943776.

[2]    Z. Wang et al., “Photocatalytic degradation of acetaminophen in aqueous environments: A mini review,” Toxics, vol. 11, no. 7, pp. 604, Jul. 2023, doi: 10.3390/toxics11070604.

[3]    J. L. Wilkinson et al., “Pharmaceutical pollution of the World’s Rivers,” in Proceedings of the National Academy of Sciences, Feb. 2022, vol. 119, no. 8, doi: 10.1073/pnas.2113947119.

[4]    S. M. F. Mariano, L. F. Angeles, D. S. Aga, C. L. Villanoy, and C. M. B. Jaraula, “Emerging pharmaceutical contaminants in key aquatic environments of the Philippines,” Frontiers in Earth Science, vol. 11, Sep. 2023, doi: 10.3389/ feart.2023.1124313.‌

[5]    W. Koagouw, N. A. Stewart, and C. Ciocan, “Long-term exposure of marine mussels to paracetamol: Is time a healer or a killer?” Environmental Science and Pollution Research, vol. 28, no. 35, pp. 48823–48836, Apr. 2021, doi: 10.1007/s11356-021-14136-6.

[6]    V. P. Cedron, A. M. J. Weiner, M. Vera, and L. Sanchez, “Acetaminophen affects the survivor, pigmentation and development of craniofacial structures in zebrafish (Danio rerio) embryos,” Biochemical Pharmacology, vol. 174, p. 113816, Apr. 2020, doi: 10.1016/j.bcp.2020.113816.

[7]    E. Choi, D. Alsop, and J. Y. Wilson, “The effects of chronic acetaminophen exposure on the kidney, gill and liver in rainbow trout (Oncorhynchus mykiss),” Aquatic Toxicology, vol. 198, pp. 20–29, May 2018, doi: 10.1016/ j.aquatox.2018.02.007.

[8]    T. Mukherjee and M. Rahaman, “Optimization of acetaminophen adsorption onto biodegradable waste-derived activated carbon using response surface methodology,” Materials Today Proceedings, vol. 76, pp. 233–238, Jan. 2023, doi: 10.1016/j.matpr.2023.01.051.

[9]    A. B. Rios-Miguel, G. J. Smith, G. Cremers, T. van Alen, M. S. M. Jetten, H. J. M. Op Den Camp, and C. U. Welte, “Microbial Paracetamol Degradation Involves a High Diversity of Novel Amidase Enzyme Candidates,” Water Research X, vol. 16, p. 100152, Aug. 2022, doi: 10.1016/ j.wroa.2022.100152.

[10] A. Saravanan, P. S. Kumar, S. Jeevanantham, M. Anubha, and S. Jayashree, “Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis,” Environmental Pollution, vol. 298, p. 118844, Apr. 2022, doi: 10.1016/ j.envpol.2022.118844.

[11] R. L. P. Rocha, L. M. C. Honorio, R. D. D. S. Bezerra, P. Trigueiro, T. M. Duarte, M. G. Fonseca, E. C. Silva-Filho, and J. A. Osajima, “Light-activated hydroxyapatite photocatalysts: New environmentally-friendly materials to mitigate pollutants,” Minerals, vol. 12, no. 5, p. 525, Apr. 2022, doi: 10.3390/min12050525.

[12] S. Panda, C. K. Biswas, and S. Paul, “A comprehensive review on the preparation and application of calcium hydroxyapatite: A special focus on atomic doping methods for bone tissue engineering,” Ceramics International, vol. 47, no. 20, pp. 28122–28144, Oct. 2021, doi: 10.1016/j.ceramint.2021.07.100.

[13] E. Márquez Brazón, C. Piccirillo, I. S. Moreira, and P. M. L. Castro, “Photodegradation of pharmaceutical persistent pollutants using hydroxyapatite-based materials,” Journal of Environmental Management, vol. 182, pp. 486–495, Nov. 2016, doi: 10.1016/j.jenvman.2016. 08.005.

[14] M. Passi and B. Pal, “A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications,” Powder Technology, vol. 388, pp. 274–304, Aug. 2021, doi: 10.1016/j.powtec.2021.04.056.

[15] S. Tian, Y. Yin, M. Liu, L. Shi, S. Zhang, A. H. Asif, X. Li, M. Liu, X. Duan, S. Wang, and H. Sun, “Atomically dispersed Cu-N3 on hollow spherical carbon nitride for acetaminophen degradation: Generation of O2 from H2O2,” Separation and Purification Technology, vol. 318, p. 124016, May 2023, doi: 10.1016/ j.seppur.2023.124016.

[16] J. H. F. Chau, C. W. Lai, B. F. Leo, J. C. Juan, and M. R. Johan, “Advanced photocatalytic degradation of acetaminophen using Cu2O/WO3/TiO2 ternary composite under solar irradiation,” Catalysis Communications, vol. 163, p. 106396, Mar. 2022, doi: 10.1016/ j.catcom.2022.106396.

[17] M. Sari and Y. Yusuf, “Synthesis and characterization of hydroxyapatite based on green mussel shells (perna viridis) with the variation of stirring time using the precipitation method,” IOP Conference Series: Materials Science and Engineering, vol. 432, p. 012046, Nov. 2018, doi: 10.1088/1757-899x/432/1/012046.

[18] I. Fatimah, R. N. Ilahi, and R. Pratami, “Low cost CaTiO3 Perovskite synthesized from Scallop (Anadara granosa) shell as antibacterial ceramic material,” IOP Conference Series: Materials Science and Engineering, vol. 299, p. 012034, Jan. 2018, doi: 10.1088/1757-899x/299/1/012034.

[19] S. Sri-o-Sot, K. Vepulanont, T. Pitakpornpreecha, A. Aroonkesorn, A. Charoenpanich, T. Srichumpong, and T. Chanadee, “CaTiO3-hydroxyapatite bioceramic composite: Synthesis of reactant powders from waste cockle shell, sintering, characterization and investigation of physical, mechanical and in-vitro biological properties,” Journal of the Australian Ceramic Society, vol. 60, pp. 65–87, Dec. 2023, doi: 10.1007/s41779-023-00987-4.

[20] M. T. D. C. Español, E. R. J. G. Garcia, L. A. V. Maligaya, C. M. S. Santos, J. A. Santos, N. G. Suarnaba, R. V. C. Rubi, and R. Raguindin, “Ultrasound-assisted biomimetic synthesis of MOF-Hap nanocomposite via 10xSBFLike for the photocatalytic degradation of metformin,” Applied Science and Engineering Progress, vol. 17, no. 2, p. 7251, Apr. 2024, doi: 10.14416/ j.asep.2023.11.002.

[21] S. C. Wu, H. C. Hsu, W. H. Wu, and W. F. Ho, “Enhancing bioactivity and mechanical properties of nano-hydroxyapatite derived from oyster shells through hydrothermal synthesis,” Nanomaterials, vol. 14, no. 15, p. 1281, Jul. 2024, doi: 10.3390/nano14151281.

[22] C. S. Eguico, M. M. Abanto, H. T. Cendaña, D. A. P. Famero, K. B. Pediongco, A. D. C. Evangelista, R. V. C. Rubi, “Sonophotopythochemical functionalization of graphene Oxide-Al-Zn bimetal nanocomposite for corrosion inhibition,” Applied Science and Engineering Progress, vol. 18, no. 2, p. 7613, Oct. 2024, doi: 10.14416/ j.asep.2024.10.004.

[23] K. Ponhan, K. Tassenberg, D. Weston, K. G. M. Nicholls, and R. Thornton, “Effect of SiC nanoparticle content and milling time on the microstructural characteristics and properties of Mg-SiC nanocomposites synthesized with powder metallurgy incorporating high-energy ball milling,” Ceramics International, vol. 46, no. 17, pp. 26956–26969, Dec. 2020, doi: 10.1016/j.ceramint.2020.07.173.

[24] B. Maleki, M. Chahkandi, R. Tayebee, S. Kahrobaei, H. Alinezhad, and S. Hemmati, “Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4‐disubstituted isoxazole‐5(4H)‐ones in water,” Applied Organometallic Chemistry, vol. 33, no. 10, Jul. 2019, doi: 10.1002/aoc.5118.

[25] N. Vijayakumar, S. K. Venkatraman, S. Imthiaz, E. A. Drweesh, M. M. Elnagar, S. Koppala, S. Swamiappan, “Synthesis and characterization of calcium and magnesium-based oxides and titanates for photocatalytic degradation of rhodamine B: a comparative study,” Scientific Reports, vol. 13, Art. no. 3615, Mar. 2023, doi: 10.1038/s41598-023-30013-3.

[26] A. Mocanu, O. Cadar, P. T. Frangopol, I. Petean, G. Tomoaia, G. A. Paltinean, C. P. Racz, O. Horovitz, and M. Tomoaia-Cotisel, “Ion release from hydroxyapatite and substituted hydroxyapatites in different immersion liquids: in vitro experiments and theoretical modelling study,” Royal Society Open Science, vol. 8, no. 1, p. 201785, Jan. 2021, doi: 10.1098/rsos.201785.

[27] F. Vento, A. Nicosia, L. Mezzina, G. Raciti, A. Gulino, M. Condorelli, L. D’Urso, G. De Guidi, and P. Mineo, “Photocatalytic activity of TiO2‐containing nanocomposites versus the chemical nature of the polymeric matrices: A comparison,” Advanced Materials Technologies, vol. 8, no. 17, May 2023, doi: 10.1002/admt. 202300391.

[28] R. Sazonov, G. Kholodnaya, D. Ponomarev, O. Lapteva, F. Konusov, R. Gadirov, and I. Zhirkov, “Pulsed plasma chemical synthesis of TiO2@TixCyOz nanocomposite,” Fullerenes Nanotubes and Carbon Nanostructures, vol. 29, no. 8, pp. 567–575, Jan. 2021, doi: 10.1080/ 1536383x.2020.1871331.

[29] H. Xian, L. Tang, Z. Mao, J. Zhang, and X. Chen, “Synergistic effects of Ca2+ and high-valence Nb5+ co-doping on the structural, optical and magnetic properties of BiFeO3,” Research Square, Apr. 2021, doi: 10.21203/rs.3.rs-182253/v1.

[30] P. Li, F. Liu, Y. Liu, R. Xue, and X. Fan, “Preparation and photocatalytic activity of visible light-responsive zinc oxide/activated carbon fiber composites,” Journal of Dispersion Science and Technology, vol. 42, no. 6, pp. 846–857, Jan. 2020, doi: 10.1080/01932691.2019. 1711110.

[31] S. Rongsawat, W. Bunma, and T. Chanadee, “In situ combustion synthesis in air of calcium titanate powders using minerals as a calcium source,” Materials Science Forum, vol. 982, pp. 20–25, Mar. 2020, doi: 10.4028/www.scientific.net/ msf.982.20.

[32] M. I. A. Abdel Maksoud, S. Abdelhaleem, E. K. Tawfik, and A. S. Awed, “Gamma radiation-induced synthesis of novel PVA/Ag/CaTiO3 nanocomposite film for flexible optoelectronics,” Scientific Reports, vol. 13, Art. no. 12385, Jul. 2023, doi: 10.1038/s41598-023-38829-9.

[33] H. E. Gomaa, H. H. El-Maghrabi, F. A. Gomaa, P. Raynaud, and A. A. Nada, “Enhanced photodegradation of acetaminophen using efficient ZnO-NiO nanofibers,” Catalysts, vol. 14, no. 7, p. 403, Jun. 2024, doi: 10.3390/ catal14070403.

[34] H. Bouyarmane, C. El Bekkali, J. Labrag, I. Es-saidi, O. Bouhnik, H. Abdelmoumen, A. Laghzizil, J-M. Nunzi, and D. Robert, “Photocatalytic degradation of emerging antibiotic pollutants in waters by TiO2/Hydroxyapatite nanocomposite materials,” Surfaces and Interfaces, vol. 24, p. 101155, Jun. 2021, doi: 10.1016/j.surfin.2021.101155.

[35] Y. Yuan, W-L. Wang, Z-W. Wang, J. Wang, and Q-Y. Wu, “Single-atom Ag-loaded carbon nitride photocatalysts for efficient degradation of acetaminophen: The role of Ag-atom and O2,” Journal of Environmental Sciences, vol. 139, pp. 12–22, May 2024, doi: 10.1016/j.jes.2023.03.042.

[36] J. Labrag, C. El Bekkali, A. Oulguidoum, D. Robert, A. Laghzizil, and J. M. Nunzi, “Porous and bifunctional ZnO-hydroxyapatite nanostructure for photocatalytic degradation of paracetamol and methylene blue in water,” Iranian Journal of Catalysis (IJC), vol. 11, no. 4, pp. 389–395, 2021, doi:10.57647/IJC-7ERA-ZC44.

[37] J. Zhang, C. Lv, C. Shi, J. Feng, and L. Wu, “Oxygen-vacancy hydroxyapatite for visible-light photocatalytic degradation of tetracycline with online spectral monitoring,” Microchemical Journal, vol. 192, p. 108906, Sep. 2023, doi: 10.1016/j.microc.2023.108906.

[38] M. Mostafa, Z. A. Alrowaili, M.M. Al Shehri, M. Mobarak, and A. M. Abbas, “Structural and optical properties of calcium titanate prepared from gypsum,” Journal of Nanotechnology, vol. 2022, no. 1 pp. 1–9, Mar. 2022, doi: 10.1155/ 2022/6020378.

[39]  A. B. Lavand, M. N. Bhatu, and Y. S. Malghe, “Visible light photocatalytic degradation of malachite green using modified titania,” Journal of Materials Research and Technology, vol. 8, no. 1, pp. 299–308, Jan.-Mar. 2019, doi: 10.1016/j.jmrt.2017.05.019.

Full Text: PDF

DOI: 10.14416/j.asep.2025.09.005

Refbacks

  • There are currently no refbacks.