Solid-State Synthesis of Green Mussels (Perna viridis)-Derived Hydroxyapatite and Perovskite Nanocomposite for the Photo-catalytic Degradation of Acetaminophen
Abstract
Keywords
[1] C. A. Aguilar et al., “Effect of kinetics on the photocatalytic degradation of acetaminophen and the distribution of major intermediate with anatase-Ag synthesized by sol gel under visible irradiation,” Frontiers in Environmental Science, vol. 10, Oct. 2022, doi: 10.3389/fenvs.2022. 943776.
[2] Z. Wang et al., “Photocatalytic degradation of acetaminophen in aqueous environments: A mini review,” Toxics, vol. 11, no. 7, pp. 604, Jul. 2023, doi: 10.3390/toxics11070604.
[3] J. L. Wilkinson et al., “Pharmaceutical pollution of the World’s Rivers,” in Proceedings of the National Academy of Sciences, Feb. 2022, vol. 119, no. 8, doi: 10.1073/pnas.2113947119.
[4] S. M. F. Mariano, L. F. Angeles, D. S. Aga, C. L. Villanoy, and C. M. B. Jaraula, “Emerging pharmaceutical contaminants in key aquatic environments of the Philippines,” Frontiers in Earth Science, vol. 11, Sep. 2023, doi: 10.3389/ feart.2023.1124313.
[5] W. Koagouw, N. A. Stewart, and C. Ciocan, “Long-term exposure of marine mussels to paracetamol: Is time a healer or a killer?” Environmental Science and Pollution Research, vol. 28, no. 35, pp. 48823–48836, Apr. 2021, doi: 10.1007/s11356-021-14136-6.
[6] V. P. Cedron, A. M. J. Weiner, M. Vera, and L. Sanchez, “Acetaminophen affects the survivor, pigmentation and development of craniofacial structures in zebrafish (Danio rerio) embryos,” Biochemical Pharmacology, vol. 174, p. 113816, Apr. 2020, doi: 10.1016/j.bcp.2020.113816.
[7] E. Choi, D. Alsop, and J. Y. Wilson, “The effects of chronic acetaminophen exposure on the kidney, gill and liver in rainbow trout (Oncorhynchus mykiss),” Aquatic Toxicology, vol. 198, pp. 20–29, May 2018, doi: 10.1016/ j.aquatox.2018.02.007.
[8] T. Mukherjee and M. Rahaman, “Optimization of acetaminophen adsorption onto biodegradable waste-derived activated carbon using response surface methodology,” Materials Today Proceedings, vol. 76, pp. 233–238, Jan. 2023, doi: 10.1016/j.matpr.2023.01.051.
[9] A. B. Rios-Miguel, G. J. Smith, G. Cremers, T. van Alen, M. S. M. Jetten, H. J. M. Op Den Camp, and C. U. Welte, “Microbial Paracetamol Degradation Involves a High Diversity of Novel Amidase Enzyme Candidates,” Water Research X, vol. 16, p. 100152, Aug. 2022, doi: 10.1016/ j.wroa.2022.100152.
[10] A. Saravanan, P. S. Kumar, S. Jeevanantham, M. Anubha, and S. Jayashree, “Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis,” Environmental Pollution, vol. 298, p. 118844, Apr. 2022, doi: 10.1016/ j.envpol.2022.118844.
[11] R. L. P. Rocha, L. M. C. Honorio, R. D. D. S. Bezerra, P. Trigueiro, T. M. Duarte, M. G. Fonseca, E. C. Silva-Filho, and J. A. Osajima, “Light-activated hydroxyapatite photocatalysts: New environmentally-friendly materials to mitigate pollutants,” Minerals, vol. 12, no. 5, p. 525, Apr. 2022, doi: 10.3390/min12050525.
[12] S. Panda, C. K. Biswas, and S. Paul, “A comprehensive review on the preparation and application of calcium hydroxyapatite: A special focus on atomic doping methods for bone tissue engineering,” Ceramics International, vol. 47, no. 20, pp. 28122–28144, Oct. 2021, doi: 10.1016/j.ceramint.2021.07.100.
[13] E. Márquez Brazón, C. Piccirillo, I. S. Moreira, and P. M. L. Castro, “Photodegradation of pharmaceutical persistent pollutants using hydroxyapatite-based materials,” Journal of Environmental Management, vol. 182, pp. 486–495, Nov. 2016, doi: 10.1016/j.jenvman.2016. 08.005.
[14] M. Passi and B. Pal, “A review on CaTiO3 photocatalyst: Activity enhancement methods and photocatalytic applications,” Powder Technology, vol. 388, pp. 274–304, Aug. 2021, doi: 10.1016/j.powtec.2021.04.056.
[15] S. Tian, Y. Yin, M. Liu, L. Shi, S. Zhang, A. H. Asif, X. Li, M. Liu, X. Duan, S. Wang, and H. Sun, “Atomically dispersed Cu-N3 on hollow spherical carbon nitride for acetaminophen degradation: Generation of O2 from H2O2,” Separation and Purification Technology, vol. 318, p. 124016, May 2023, doi: 10.1016/ j.seppur.2023.124016.
[16] J. H. F. Chau, C. W. Lai, B. F. Leo, J. C. Juan, and M. R. Johan, “Advanced photocatalytic degradation of acetaminophen using Cu2O/WO3/TiO2 ternary composite under solar irradiation,” Catalysis Communications, vol. 163, p. 106396, Mar. 2022, doi: 10.1016/ j.catcom.2022.106396.
[17] M. Sari and Y. Yusuf, “Synthesis and characterization of hydroxyapatite based on green mussel shells (perna viridis) with the variation of stirring time using the precipitation method,” IOP Conference Series: Materials Science and Engineering, vol. 432, p. 012046, Nov. 2018, doi: 10.1088/1757-899x/432/1/012046.
[18] I. Fatimah, R. N. Ilahi, and R. Pratami, “Low cost CaTiO3 Perovskite synthesized from Scallop (Anadara granosa) shell as antibacterial ceramic material,” IOP Conference Series: Materials Science and Engineering, vol. 299, p. 012034, Jan. 2018, doi: 10.1088/1757-899x/299/1/012034.
[19] S. Sri-o-Sot, K. Vepulanont, T. Pitakpornpreecha, A. Aroonkesorn, A. Charoenpanich, T. Srichumpong, and T. Chanadee, “CaTiO3-hydroxyapatite bioceramic composite: Synthesis of reactant powders from waste cockle shell, sintering, characterization and investigation of physical, mechanical and in-vitro biological properties,” Journal of the Australian Ceramic Society, vol. 60, pp. 65–87, Dec. 2023, doi: 10.1007/s41779-023-00987-4.
[20] M. T. D. C. Español, E. R. J. G. Garcia, L. A. V. Maligaya, C. M. S. Santos, J. A. Santos, N. G. Suarnaba, R. V. C. Rubi, and R. Raguindin, “Ultrasound-assisted biomimetic synthesis of MOF-Hap nanocomposite via 10xSBFLike for the photocatalytic degradation of metformin,” Applied Science and Engineering Progress, vol. 17, no. 2, p. 7251, Apr. 2024, doi: 10.14416/ j.asep.2023.11.002.
[21] S. C. Wu, H. C. Hsu, W. H. Wu, and W. F. Ho, “Enhancing bioactivity and mechanical properties of nano-hydroxyapatite derived from oyster shells through hydrothermal synthesis,” Nanomaterials, vol. 14, no. 15, p. 1281, Jul. 2024, doi: 10.3390/nano14151281.
[22] C. S. Eguico, M. M. Abanto, H. T. Cendaña, D. A. P. Famero, K. B. Pediongco, A. D. C. Evangelista, R. V. C. Rubi, “Sonophotopythochemical functionalization of graphene Oxide-Al-Zn bimetal nanocomposite for corrosion inhibition,” Applied Science and Engineering Progress, vol. 18, no. 2, p. 7613, Oct. 2024, doi: 10.14416/ j.asep.2024.10.004.
[23] K. Ponhan, K. Tassenberg, D. Weston, K. G. M. Nicholls, and R. Thornton, “Effect of SiC nanoparticle content and milling time on the microstructural characteristics and properties of Mg-SiC nanocomposites synthesized with powder metallurgy incorporating high-energy ball milling,” Ceramics International, vol. 46, no. 17, pp. 26956–26969, Dec. 2020, doi: 10.1016/j.ceramint.2020.07.173.
[24] B. Maleki, M. Chahkandi, R. Tayebee, S. Kahrobaei, H. Alinezhad, and S. Hemmati, “Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4‐disubstituted isoxazole‐5(4H)‐ones in water,” Applied Organometallic Chemistry, vol. 33, no. 10, Jul. 2019, doi: 10.1002/aoc.5118.
[25] N. Vijayakumar, S. K. Venkatraman, S. Imthiaz, E. A. Drweesh, M. M. Elnagar, S. Koppala, S. Swamiappan, “Synthesis and characterization of calcium and magnesium-based oxides and titanates for photocatalytic degradation of rhodamine B: a comparative study,” Scientific Reports, vol. 13, Art. no. 3615, Mar. 2023, doi: 10.1038/s41598-023-30013-3.
[26] A. Mocanu, O. Cadar, P. T. Frangopol, I. Petean, G. Tomoaia, G. A. Paltinean, C. P. Racz, O. Horovitz, and M. Tomoaia-Cotisel, “Ion release from hydroxyapatite and substituted hydroxyapatites in different immersion liquids: in vitro experiments and theoretical modelling study,” Royal Society Open Science, vol. 8, no. 1, p. 201785, Jan. 2021, doi: 10.1098/rsos.201785.
[27] F. Vento, A. Nicosia, L. Mezzina, G. Raciti, A. Gulino, M. Condorelli, L. D’Urso, G. De Guidi, and P. Mineo, “Photocatalytic activity of TiO2‐containing nanocomposites versus the chemical nature of the polymeric matrices: A comparison,” Advanced Materials Technologies, vol. 8, no. 17, May 2023, doi: 10.1002/admt. 202300391.
[28] R. Sazonov, G. Kholodnaya, D. Ponomarev, O. Lapteva, F. Konusov, R. Gadirov, and I. Zhirkov, “Pulsed plasma chemical synthesis of TiO2@TixCyOz nanocomposite,” Fullerenes Nanotubes and Carbon Nanostructures, vol. 29, no. 8, pp. 567–575, Jan. 2021, doi: 10.1080/ 1536383x.2020.1871331.
[29] H. Xian, L. Tang, Z. Mao, J. Zhang, and X. Chen, “Synergistic effects of Ca2+ and high-valence Nb5+ co-doping on the structural, optical and magnetic properties of BiFeO3,” Research Square, Apr. 2021, doi: 10.21203/rs.3.rs-182253/v1.
[30] P. Li, F. Liu, Y. Liu, R. Xue, and X. Fan, “Preparation and photocatalytic activity of visible light-responsive zinc oxide/activated carbon fiber composites,” Journal of Dispersion Science and Technology, vol. 42, no. 6, pp. 846–857, Jan. 2020, doi: 10.1080/01932691.2019. 1711110.
[31] S. Rongsawat, W. Bunma, and T. Chanadee, “In situ combustion synthesis in air of calcium titanate powders using minerals as a calcium source,” Materials Science Forum, vol. 982, pp. 20–25, Mar. 2020, doi: 10.4028/www.scientific.net/ msf.982.20.
[32] M. I. A. Abdel Maksoud, S. Abdelhaleem, E. K. Tawfik, and A. S. Awed, “Gamma radiation-induced synthesis of novel PVA/Ag/CaTiO3 nanocomposite film for flexible optoelectronics,” Scientific Reports, vol. 13, Art. no. 12385, Jul. 2023, doi: 10.1038/s41598-023-38829-9.
[33] H. E. Gomaa, H. H. El-Maghrabi, F. A. Gomaa, P. Raynaud, and A. A. Nada, “Enhanced photodegradation of acetaminophen using efficient ZnO-NiO nanofibers,” Catalysts, vol. 14, no. 7, p. 403, Jun. 2024, doi: 10.3390/ catal14070403.
[34] H. Bouyarmane, C. El Bekkali, J. Labrag, I. Es-saidi, O. Bouhnik, H. Abdelmoumen, A. Laghzizil, J-M. Nunzi, and D. Robert, “Photocatalytic degradation of emerging antibiotic pollutants in waters by TiO2/Hydroxyapatite nanocomposite materials,” Surfaces and Interfaces, vol. 24, p. 101155, Jun. 2021, doi: 10.1016/j.surfin.2021.101155.
[35] Y. Yuan, W-L. Wang, Z-W. Wang, J. Wang, and Q-Y. Wu, “Single-atom Ag-loaded carbon nitride photocatalysts for efficient degradation of acetaminophen: The role of Ag-atom and O2,” Journal of Environmental Sciences, vol. 139, pp. 12–22, May 2024, doi: 10.1016/j.jes.2023.03.042.
[36] J. Labrag, C. El Bekkali, A. Oulguidoum, D. Robert, A. Laghzizil, and J. M. Nunzi, “Porous and bifunctional ZnO-hydroxyapatite nanostructure for photocatalytic degradation of paracetamol and methylene blue in water,” Iranian Journal of Catalysis (IJC), vol. 11, no. 4, pp. 389–395, 2021, doi:10.57647/IJC-7ERA-ZC44.
[37] J. Zhang, C. Lv, C. Shi, J. Feng, and L. Wu, “Oxygen-vacancy hydroxyapatite for visible-light photocatalytic degradation of tetracycline with online spectral monitoring,” Microchemical Journal, vol. 192, p. 108906, Sep. 2023, doi: 10.1016/j.microc.2023.108906.
[38] M. Mostafa, Z. A. Alrowaili, M.M. Al Shehri, M. Mobarak, and A. M. Abbas, “Structural and optical properties of calcium titanate prepared from gypsum,” Journal of Nanotechnology, vol. 2022, no. 1 pp. 1–9, Mar. 2022, doi: 10.1155/ 2022/6020378.
[39] A. B. Lavand, M. N. Bhatu, and Y. S. Malghe, “Visible light photocatalytic degradation of malachite green using modified titania,” Journal of Materials Research and Technology, vol. 8, no. 1, pp. 299–308, Jan.-Mar. 2019, doi: 10.1016/j.jmrt.2017.05.019.DOI: 10.14416/j.asep.2025.09.005
Refbacks
- There are currently no refbacks.