Postharvest Pathogens in Strawberry (Fragaria x ananassa): Potential of Plasma-Activated Water and Micro-Nano Bubbles for Control – A Review
Abstract
Keywords
[1] Food and Agriculture Organization of the United Nations. “Crops and Livestock Products.” fao.org. Accessed: Jan. 4, 2025. [Online]. Available: https://www.fao.org/faostat/en/#data/QCL
[2] G. N. Tenea and P. Reyes, “Bacterial community changes in strawberry fruits (Fragaria × ananassa variety ‘Monterey’) from farm field to retail market stands, an indicator of postharvest contamination,” Frontiers in Microbiology, vol. 15, 2024, Art. no. 1348316, doi: 10.3389/fmicb.2024. 1348316.
[3] G. N. Tenea, P. Reyes, and C. Flores, “Crosslinking bacterial postbiotics for microbial and quality control of strawberries postharvest: Bacteriological and 16S amplicon metagenome evidence,” Frontiers in Microbiology, vol. 16, 2025, Art. no. 1570312, doi: 10.3389/fmicb.2025.1570312.
[4] R. Rajestary, L. Landi, and G. Romanazzi, “Effects of commercial natural compounds on postharvest decay of strawberry fruit,” Coatings, vol. 13, no. 9, 2023, Art. no. 1515, doi: 10.3390/ coatings13091515.
[5] E. Feliziani and G. Romanazzi, “Postharvest decay of strawberry fruit: Etiology, epidemiology, and disease management,” Journal of Berry Research, vol. 6, no. 1, pp. 47–63, 2016, doi: 10.3233/JBR-150113.
[6] A. El-Araby, A. Azzouzi, I. M. Ayam, K. F. Samouh, and F. Errachidi, “Survey on technical management of strawberries in Morocco and evaluation of their postharvest microbial load,” Frontiers in Microbiology, vol. 13, 2023, Art. no. 1115340, doi: 10.3389/fmicb.2022.1115340.
[7] R. Badmi, A. Gogoi, and B. D. Prestwich, “Secondary metabolites and their role in strawberry defense,” Plants, vol. 12, no. 18, 2023, Art. no. 3240, doi: 10.3390/plants12183240.
[8] C. Dong, W. Fang, Q. Yi, and J. Zhang, “A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs),” Chemosphere, vol. 308, 2022, Art. no. 136205, doi: 10.1016/j.chemosphere.2022.136205.
[9] K. Moonsub, D. Boonyawan, V. Tonglek, and W. Wattanutchariya, “Enhancing efficiency of plasma-activated water using microbubbles/ nanobubbles techniques,” in Proceedings of the 2022 International Conference on Industrial Engineering and Operations Management, Istanbul, Turkey, 2022, pp. 7–10, doi: 10.46254/AN12.20220190.
[10] H. K. Malahlela, Z. A. Belay, R. R. Mphahlele, and O. J. Caleb, “Micro-nano bubble water technology: Sustainable solution for the postharvest quality and safety management of fresh fruits and vegetables–A review,” Innovative Food Science & Emerging Technologies, vol. 94, 2024, Art. no. 103665, doi: 10.1016/j.ifset.2024.103665.
[11] L. Peiyuan, C. Jinxin, W. Tianzhi, F. Manuel, Z. Yujie, and S. T. Khu, “Control mechanism of Escherichia coli invasion by micro-nano bubbles in drinking water distribution system,” Environmental Research, vol. 270, 2025, Art. no. 120897, doi: 10.1016/j.envres.2025.120897.
[12] M. Dwivedi, R. K. Rai, and P. Singh, “Evaluating innovative strategies for managing strawberry fruit rot diseases: Insight from current research,” Studies in Fungi, vol. 10, no. 1, 2025, Art. no. e012, doi: 10.48130/sif-0025-0012.
[13] H. Q. Quarshi, W. Ahmed, R. Azmant, N. Chendouh-Brahmi, A. Quyyum, and A. Abbas, “Postharvest problems of strawberry and their solutions,” in Recent Studies on Strawberries, London, UK: IntechOpen, 2023. doi: 10.5772/intechopen.102963.
[14] L. R. Morales-Cedeño et al., “Evaluation of Biocontrol Potential of Bacillus spp. and Pseudomonas fluorescens UM270 against Postharvest Fungal Pathogens,” Microbiology Research, vol. 14, no. 4, pp. 1511–1523, 2023, doi: 10.3390/microbiolres14040103.
[15] Z. Barboráková, S. Jakabová, Z. Maskova, M. Mrvová, V. Uzsáková, J. Maková, and D. Tancinova, “Toxin producing micromycetes of the genus Penicillium and Aspergillus on berries, grapes, and tomato fruits in Slovak stores,” Journal of Microbiology, Biotechnology and Food Sciences, vol. 13, no. 1, 2023, Art. no. e9927, doi: 10.55251/jmbfs.9927.
[16] Y. Ji, X. Li, Q. H. Gao, C. Geng, and K. Duan, “Colletotrichum species pathogenic to strawberry: Discovery history, global diversity, prevalence in China, and the host range of top two species,” Phytopathology Research, vol. 4, no. 1, 2022, Art. no. 42, doi: 10.1186/s42483-022-00147-9.
[17] M. Nakielska, B. Feledyn-Szewczyk, A. K. Berbeć, and M. Frąc, “Microbial biopreparations and their impact on organic strawberry (Fragaria x ananassa Duch.) yields and fungal infestation,” Sustainability, vol. 16, no. 17, 2024, Art. no. 7559, doi: 10.3390/su16177559.
[18] X. Sun, C. Wang, X. Gao, X. Wu, and Y. Fu, “Characterization of Alternaria species associated with black spot of strawberry in Dandong, China,” Agronomy, vol. 13, no. 4, 2023, Art. no. 1014, doi: 10.3390/agronomy 13041014.
[19] L. Zakaria, “An overview of Aspergillus species associated with plant diseases,” Pathogens, vol. 13, no. 9, 2024, Art. no. 813, doi: 10.3390/pathogens 13090813.
[20] S. Promyou, Y. Raruang, and Z. Y. Chen, “Melatonin treatment of strawberry fruit during storage extends its postharvest quality and reduces infection caused by Botrytis cinerea,” Foods, vol. 12, no. 7, 2023, Art. no.1445, doi: 10.3390/foods12071445.
[21] S. A. M. Yousef, A. M. Ali, E. A. Elsherbiny, and A. A. Atwa, “Morphological, genetic and pathogenic variability among Botrytis cinerea species complex causing gray mold of strawberry,” Physiological and Molecular Plant Pathology, vol. 134, 2024, Art. no. 102395, doi: 10.1016/j.pmpp.2024.102395.
[22] L. H. Farwell et al., “Cladosporium species: The predominant species present on raspberries from the U.K. and Spain and their ability to cause skin and stigmata infections,” Horticulturae, vol. 9, no. 2, 2023, Art. no. 128, doi: 10.3390/horti culturae9020128.
[23] C. S. Rebello, J. S. Baggio, B. B. Forcelini, and N. A. Peres, “Sensitivity of Colletotrichum acutatum species complex from strawberry to fungicide alternatives to quinone-outside inhibitors,” Plant Disease, vol. 106, no. 8, pp. 2053–2059, 2022, doi: 10.1094/PDIS-09-21-1934-RE.
[24] S. Hu et al., “Colletotrichum spp. diversity between leaf anthracnose and crown rot from the same strawberry plant,” Frontiers in Microbiology, vol. 13, 2022, doi: 10.3389/fmicb.2022.860694.
[25] M. H. Nam, J. H. Yoo, and H. N. Park, “Fusarium wilt of strawberry: Etiological and ecological characteristics, and management,” Research in Plant Disease, vol. 30, no. 4, pp. 313–324, 2024, doi: 10.5423/RPD.2024.30.4.313.
[26] North Carolina State Extension Publications, “Gnomonia leaf blotch and stem-end rot of strawberry,” content.ces.ncsu.edu. Accessed: May 22, 2025. [Online]. Available: https:// content.ces.ncsu.edu/gnomonia-comari-leaf-blotch-of-strawberry
[27] Royal Brinkman, “Mucor mold on strawberries,” royalbrinkman.com. Accessed: May 22, 2025. [Online]. Available: https://royalbrinkman.com/ knowledge-center/crop-protection-disinfection/diseases/combating-mucor
[28] F. Momtaz, G. Hardy, and K. L. Bayliss, “Fungal communities associated with postharvest strawberries in Western Australia,” Plant Pathology, vol. 74, no. 1, pp. 210–219, 2025, doi: 10.1111/ ppa.14010.
[29] J. M. Lima et al., “Epidemiology of Mycosphaerella leaf spot and powdery mildew and agronomic parameters of strawberry cultivars and genotypes in the highland region of Southern Brazil,” Agriculture, vol. 14, no. 8, 2024, Art. no. 1373, doi: 10.3390/agriculture 14081373.
[30] J. G. Ávila-Hernández et al., “Neopestalotiopsis spp.: A threat to strawberry production and management,” Horticulturae, vol. 11, no. 3, 2025, Art. no. 288, doi: 10.3390/horticulturae 11030288.
[31] C. Garrido, V. E. González-Rodríguez, M. Carbú, A. M. Husaini, and J. M. Cantoral, “Fungal diseases of strawberry and their diagnosis,” in Strawberry: Growth, Development and Diseases, UK: CABI, 2016, pp. 157–195, doi: 10.1079/9781780646633.0157.
[32] S. Hatamzadeh, N. A. Oghaz, K. Rahnama, and F. Noori, “Comparison of the antifungal activity of chlorine dioxide, peracetic acid and some chemical fungicides in postharvest management of Penicillium digitatum and Botrytis cinerea infecting sweet orange and strawberry fruits,” Agricultural Research, vol. 13, no. 1, pp. 72–84, 2024, doi: 10.1007/s40003-023-00677-4.
[33] N. Feoktistova, E. Suldina, A. Lomakin, A. Mastilenko, and I. Bogdanov, “Methodology of development and approbation of a test system for identification of Penicillium expansum based on polymerase chain reaction (real-time),” AIP Conference Proceedings, vol. 3011, no. 1, Art. no. 020048, doi: 10.1063/5.0161094.
[34] C. Salgado-Salazar et al., “Where flowers bloom, so do downy mildews: New species and new records of Hyaloperonospora, Peronospora and Plasmopara species on ornamental and wild plants in the United States,” Plant Health Progress, 2025, doi: 10.1094/PHP-10-24-0100-RS.
[35] A. Gogoi, S. L. Rossmann, E. Lysoe, A. Stensvand, and M. B. Brurberg, “Genome analysis of Phytophthora cactorum strains associated with crown- and leather-rot in strawberry,” Frontiers in Microbiology, vol. 14, 2023, doi: 10.3389/fmicb.2023.1214924.
[36] A. Endes, “The effect of Phytophthora citrophthora infection of strawberry physiology and histology in the presence of calcium, iron, and zinc deficiencies,” Applied Fruit Science, vol. 66, no. 5, pp. 1767–1775, 2024, doi: 10.1007/s10341-024-01160-2.
[37] M. V. Marin, T. E. Seijo, E. Zuchelli, and N. A. Peres, “Detection and characterization of quinone outside inhibitor-resistant Phytophthora cactorum and P. nicotianae causing leather rot in Florida strawberry,” Plant Disease, vol. 106, no. 4, pp. 1203–1208, 2022, doi: 10.1094/PDIS-08-21-1658-RE.
[38] S. Demir et al., “Biological control of three fungal diseases in strawberry (Fragaria × ananassa) with arbuscular mycorrhizal fungi,” Agronomy, vol. 13, no. 9, 2023, Art. no. 2439, doi: 10.3390/agronomy13092439.
[39] Y. J. Hu, H. M. Yang, J. Jin, H. H. Yan, J. P. Wang, and R. Q. Zhang, “Synergistic activity of antagonistic Trichoderma spp. and Rhizoctonia solani increases disease severity on strawberry petioles,” European Journal of Plant Pathology, vol. 164, no. 3, pp. 375–389, 2022, doi: 10.1007/s10658-022-02568-w.
[40] E. Azeddine et al., “Efficacy of the combined application of based Trichoderma asperellum products and tolclofos-methyl to control Rhizoctonia solani black crown rot in strawberry,” in Advanced Systems for Environmental Monitoring, IoT and the Application of Artificial Intelligence, Cham, Switzerland: Springer Nature, 2024, pp. 123–143, doi: 10.1007/978-3-031-50860-8_8.
[41] X. Xu, S. Agyare, E. Browne, and T. Passey, “Predicting infection of strawberry fruit by Mucor and Rhizopus spp. under protected conditions,” Frontiers in Horticulture, vol. 3, 2024, Art. no. 1373717, doi: 10.3389/fhort.2024. 1373717.
[42] M. Marin, C. Rebello, and N. A. Peres. “Enhancing the management of important and emerging diseases of strawberry through rapid and accurate diagnostic and monitoring of fungicide resistance.” floridastrawberry.org. Accessed: Jul. 11, 2025. [Online]. Available: https://member.floridastrawberry.org/wp-content/uploads/2024/11/18_FSREF_report_2023-24_Peres_5_diagnosis.pdf
[43] A. Delgado, M. Toro, M. Memenza-Zegarra, and D. Zúñiga-Dávila, “Control of white rot caused by Sclerotinia sclerotiorum in strawberry using arbuscular mycorrhizae and plant growth promoting bacteria,” Sustainability, vol. 15, no. 4, 2023, Art. no. 2901, doi: 10.3390/su15042901.
[44] F. J. Louws, “Southern stem blight of strawberry,” content.ces.ncsu.edu. Accessed Jul. 10, 2025. [Online]. Available: https://content.ces.ncsu.edu/ southern-stem-blight-of-strawberry
[45] A. S. Lyzhin and I. V. Luk’yanchuk, “Study of a genetic collection of strawberry (Fragaria L.) for resistance to powdery mildew,” Vavilov Journal of Genetics and Breeding, vol. 28, no. 2, pp. 166–174, 2024, doi: 10.18699/vjgb-24-19.
[46] F. Moradinezhad and A. Ranjbar, “Advances in postharvest diseases management of fruits and vegetables: A review,” Horticulturae, vol. 9, no. 10, 2023, Art. no. 1099, doi: 10.3390/horticulturae 9101099.
[47] Q. Shakeel, M. R. Shaheen, S. Ali, A. Ahmad, M. Raheel, and R. T. Bajwa, “Postharvest management of fruits and vegetables,” in Applications of Biosurfactant in Agriculture, Amsterdam, Netherlands: Elsevier, 2022, pp. 1–16, doi: 10.1016/B978-0-12-822921-7.00001-5.
[48] G. Romanazzi, E. Feliziani, and L. Landi, “Preharvest treatments with alternatives to conventional fungicides to control postharvest decay of strawberry,” Acta Horticulturae, no. 1117, pp. 111–118, 2016, doi: 10.17660/Acta Hortic.2016.1117.19.
[49] R. Singh, C. Caseys, and D. J. Kliebenstein, “Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea,” Molecular Plant Pathology, vol. 25, no. 1, 2024, doi: 10.1111/mpp.13404.
[50] Z. Javanmardi, M. K. Saba, H. Nourbakhsh, and J. Amini, “Efficiency of nano emulsion of essential oils to control Botrytis cinerea on strawberry surface and prolong fruit shelf life,” International Journal of Food Microbiology, vol. 384, 2023, Art. no. 109979, doi: 10.1016/ j.ijfoodmicro.2022.109979.
[51] Q. Liu et al., “Rhizopus stolonifer and related control strategies in postharvest fruit: A review,” Heliyon, vol. 10, no. 8, 2024, Art. no. e29522, doi: 10.1016/j.heliyon.2024.e29522.
[52] T. O. Caretta et al., “Antifungal activity of surfactin produced by Bacillus subtilis against phytopathogenic fungi in apple and strawberry: an in vitro and in vivo study,” International Journal of Food Science and Technology, vol. 60, no. 1, 2025, doi: 10.1093/ijfood/vvaf087.
[53] J. Yang, K. Duan, Y. Liu, L. Song, and Q. Gao, “Method to detect and quantify colonization of anthracnose causal agent Colletotrichum gloeosporioides species complex in strawberry by real‐time PCR,” Journal of Phytopathology, vol. 170, no. 5, pp. 326–336, 2022, doi: 10.1111/ jph.13082.
[54] D. Ghimere, A. Erdogan, A. Baran, M. Gurses, and H. M. Aktas, “Determination of mold diversity of some fruits sold in Eastern Turkey,” Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 12, no. 4, pp. 2199–2208, 2022, doi: 10.21597/jist.1084083.
[55] I. Kahramanoğlu, O. Panfilova, T. G. Kesimci, A. U. Bozhüyük, R. Gürbüz, and H. Alptekin, “Control of postharvest gray mold at strawberry fruits caused by Botrytis cinerea and improving fruit storability through Origanum onites L. and Ziziphora clinopodioides L. volatile essential oils,” Agronomy, vol. 12, no. 2, 2022, Art. no. 389, doi: 10.3390/agronomy12020389.
[56] X. Huang, W. Liu, F. Dong, Y. Xu, S. Tian, and T. Chen, “Sapindus mukorossi saponins inhibit gray mold on strawberry fruit by impairing membrane integrity and organellar homeostasis of Botrytis cinerea,” Postharvest Biology and Technology, vol. 207, 2024, Art. no.112594, doi: 10.1016/j.postharvbio.2023.112594.
[57] A. Rhouma, L. Hajji-Hedfi, S. Ben Othmen, K. Kumari Shah, A. A. A. Matrood, O. G. Okon, and D. Pant, “Strawberry grey mould, a devastating disease caused by the airborne fungal pathogen Botrytis cinerea,” Egyptian Journal of Phytopathology, vol. 50, no. 2, pp. 44–50, 2022, doi: 10.21608/ejp.2022.161763.1070.
[58] Y. Zhao, B. de Coninck, B. Ribeiro, B. Nicolaï, and M. Hertog, “Early detection of Botrytis cinerea in strawberry fruit during quiescent infection using selected ion flow tube mass spectrometry (SIFT-MS),” International Journal of Food Microbiology, vol. 402, 2023, Art. no. 110313, doi: 10.1016/j.ijfoodmicro.2023.110313.
[59] S. Petrasch, S. J. Knapp, J. A. L. V. Kan, and B. Blanco‐Ulate, “Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea,” Molecular Plant Pathology, vol. 20, no. 6, pp. 877–892, 2019, doi: 10.1111/mpp.12794.
[60] M. Wang, A. Weiberg, E. Dellota, D. Yamane, and H. Jin, “Botrytis small RNA Bc -siR37 suppresses plant defense genes by cross-kingdom RNAi,” RNA Biology, vol. 14, no. 4, pp. 421–428, 2017, doi: 10.1080/15476286. 2017.1291112.
[61] P. Seethapathy, “Rhizopus,” in Compendium of Phytopathogenic Microbes in Agro-Ecology, N. Amaresan and K. Kumar, Eds. Cham: Springer, 2025, pp. 683–707, doi: 10.1007/978-3-031-81770-0_29.
[62] S. Farooq et al., “Antibacterial activity of Rhizopus specie isolated from rhizosphere of Mentha Piperita,” International journal of health sciences, vol. 7, no. S1, pp. 2553–2562, 2023, doi: 10.53730/ijhs.v7nS1.14546.
[63] Y. Lamri, I. Fliss, and A. Duarte-Sierra, “Use of reuterin to inhibit mold growth and preserve quality attributes of strawberries during cold storage,” Future Foods, vol. 9, 2024, Art. no. 100361, doi: 10.1016/j.fufo.2024.100361.
[64] R. P. Oliver, “Diseases caused by fungi,” in Agrios’ Plant Pathology. Amsterdam, Netherlands: Elsevier, 2024, pp. 339–427, doi: 10.1016/B978-0-12-822429-8.00013-3.
[65] S. D. Mesquida-Pesci et al., “Rhizopus stolonifer exhibits necrotrophic behavior when causing soft rot in ripe fruit,” Phytopathology, 2024, doi: 10.1094/PHYTO-03-24-0081-R.
[66] H. Ren, Y. Gao, E. Feng, S. He, and Q. Huang, “First report of Mucor inaequisporus (Mucorales, Mucoromycota) causing postharvest rot of strawberry fruit in Kunming, China,” Plant Disease, vol. 107, no. 7, 2023, Art. no. 2241, doi: 10.1094/PDIS-09-22-2262-PDN.
[67] R. Priyadarshi, A. Jayakumar, C. K. de Souza, J. Rhim, and J. T. Kim, “Advances in strawberry postharvest preservation and packaging: A comprehensive review,” Comprehensive Reviews in Food Science and Food Safety, vol. 23, no. 4, 2024, doi: 10.1111/1541-4337.13417.
[68] A. E. de Almeida Souza, A. L. C. M. de Azevedo Santiago, A. C. de Queiroz Brito, J. A. da Silva Melo, C. M. de Souza-Motta, and A. R. Machado, “New reports of Rhizopus and Mucor (Mucorales, Mucoromycota) causing postharvest rot in tropical fruits in Brazil,” Journal of Plant Diseases and Protection, vol. 132, no. 1, p. 5, 2025, doi: 10.1007/s41348-024-01035-4.
[69] W. M. Jurick and J. E. Adaskaveg, “Postharvest diseases,” in Agrios’ Plant Pathology. Amsterdam, Netherlands: Elsevier, 2024, pp. 317–330, doi: 10.1016/B978-0-12-822429-8.00011-X.
[70] A. A. El-Shahir, N. M. Alzamel, A. O. Abuzaid, N. Loutfy, and E. A. Alwaleed, “Antifungal properties of Sargassum cinereum and Padina boergesenii extracts against fungi associated with strawberry fruits concerning mycotoxin production,” Plants, vol. 13, no. 22, 2024, Art. no. 3115, doi: 10.3390/plants13223115.
[71] S. Alam, M. Nisar, S. A. Bano, and T. Ahmad, “Impact of aerial fungal spores on human health,” in Hazardous Environmental Micro-pollutants, Health Impacts and Allied Treatment Technologies, T. Ahmed and M. Z. Hashmi, Eds. Cham: Springer, 2022, pp. 219–240, doi: 10.1007/978-3-030-96523-5_10.
[72] C. G. Gidalishova, Y. S. Usaeva, and F. S. Turlova, “Biological features of fungi of the genus Mucor,” BIO Web of Conferences, vol. 63, 2023, Art. no. 06009, doi: 10.1051/bioconf/ 20236306009.
[73] S. Chaturvedi and I. P. Sarethy, “Major habitats and diversity of thermophilic fungi,” in Extremophilic Fungi, Singapore: Springer Nature Singapore, 2022, pp. 55–75, doi: 10.1007/978-981-16-4907-3_3.
[74] B. D. Aljawasim, J. B. Samtani, and M. Rahman, “New insights in the detection and management of anthracnose diseases in strawberries,” Plants, vol. 12, no. 21, 2023, Art. no. 3704, doi: 10.3390/plants12213704.
[75] A. Ciofini, F. Negrini, R. Baroncelli, and E. Baraldi, “Management of postharvest anthracnose: Current approaches and future perspectives,” Plants, vol. 11, no. 14, 2022, Art. no. 1856, doi: 10.3390/plants11141856.
[76] A. R. Ureña-Padilla, S. J. MacKenzie, B. W. Bowen, and D. E. Legard, “Etiology and population genetics of Colletotrichum spp. causing crown and fruit rot of strawberry,” Phytopathology, vol. 92, no. 11, pp. 1245–1252, 2002, doi: 10.1094/PHYTO.2002.92.11.1245.
[77] M. Guidarelli, F. Carbone, F. Mourgues, G. Perrotta, C. Rosati, P. Bertolini, and E. Baraldi, “Colletotrichum acutatum interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels,” Plant Pathology, vol. 60, no. 4, pp. 685–697, 2011, doi: 10.1111/j.1365-3059.2010.02423.x.
[78] M. D. P. Caro et al., “Defence responses triggered during the plant-pathogen interaction between strawberry (Fragaria x ananassa) and Colletotrichum acutatum,” Plant Stress, vol. 10, 2023, Art. no. 100219, doi: 10.1016/j.stress. 2023.100219.
[79] X. Li et al., “Biocontrol potential of volatile organic compounds produced by Streptomyces corchorusii CG-G2 to strawberry anthracnose caused by Colletotrichum gloeosporioides,” Food Chemistry, vol. 437, 2024, Art. no.137938, doi: 10.1016/j.foodchem.2023.137938.
[80] A. K. Pandey, M. K. Samota, A. Kumar, A. S. Silva, and N. K. Dubey, “Fungal mycotoxins in food commodities: present status and future concerns,” Frontiers in Sustainable Food Systems, vol. 7, 2023, doi: 10.3389/fsufs.2023. 1162595.
[81] S. Liu et al., “Metabonomic analysis reveals correlations between mycotoxins and secondary metabolites in Penicillium expansum cultures via time-of-flight mass spectrometry,” Food Chemistry: X, vol. 27, 2025, Art. no. 102475, doi: 10.1016/j.fochx.2025.102475.
[82] J. I. Pitt and A. D. Hocking, “Fresh and Perishable Foods,” in Fungi and Food Spoilage. Cham: Springer International Publishing, 2022, pp. 505–536, doi: 10.1007/978-3-030-85640-3_11.
[83] M. A. Hussein, A. H. M. El-Said, and A. S. Yassein, “Mycobiota associated with strawberry fruits, their mycotoxin potential and pectinase activity,” Mycology, vol. 11, no. 2, pp. 158–166, 2020, doi: 10.1080/21501203.2020.1759719.
[84] A. A. Akinsemolu and H. N. Onyeaka, “Microorganisms associated with food spoilage and foodborne diseases,” in Food Safety and Quality in the Global South. Singapore: Springer Nature Singapore, 2024, pp. 489–531. doi: 10.1007/978-981-97-2428-4_16.
[85] J. Griese, H. Schmidt, M. Gössinger, and A. Weiss, “Culture-independent analysis of the common microbiota of strawberry fruits,” LWT, vol. 217, 2025, Art. no. 117391, doi: 10.1016/ j.lwt.2025.117391.
[86] S. Atci et al., “Application of isochoric impregnation: Effects on microbial and physicochemical parameters and shelf life of strawberries stored under refrigeration,” Foods, vol. 14, no. 3, 2025, Art. no. 540, doi: 10.3390/ foods14030540.
[87] J. Zhang, Y. He, W. Ahmed, X. Wan, L. Wei, and G. Ji, “First report of bacterial angular leaf spot of strawberry caused by Xanthomonas fragariae in Yunnan Province, China,” Plant Disease, vol. 106, no. 7, 2022, Art. no.1978, doi: 10.1094/PDIS-12-21-2648-PDN.
[88] E. Osdaghi, “Xanthomonas arboricola pv. fragariae (bacterial leaf blight of strawberry),” CABI Compendium, 2023, Art. no. 108262, doi: 10.1079/cabicompendium.108262.
[89] M. V. Marin, R. Carvalho, M. L. Paret, J. B. Jones, and N. A. Peres, “Pseudomonas fragariae sp. nov., a novel bacterial species causing leaf spots on strawberry (Fragaria × ananassa),” International Journal of Systematic and Evolutionary Microbiology, vol. 74, no. 8, Art. no. 006476, 2024, doi: 10.1099/ijsem.0.006476.
[90] L. Pérez-Lavalle, A. Valero, M. Cejudo-Gómez, and E. Carrasco, “Assessment of the efficacy of decontamination treatments against Salmonella enterica subsp. enterica serovar Thompson on strawberries at different storage conditions,” Postharvest Biology and Technology, vol. 212, 2024, Art. no. 112907, doi: 10.1016/j. postharvbio.2024.112907.
[91] H. B. Yin, C. H. Chen, S. Colorado-Suarez, and J. Patel, “Biocontrol of Listeria monocytogenes and Salmonella enterica on fresh strawberries with Lactic Acid Bacteria during refrigerated storage,” Foodborne Pathogens and Disease, vol. 19, no. 5, pp. 324–331, 2022, doi: 10.1089/ fpd.2021.0091.
[92] M. Oliveira, M. Carvalho, and P. Teixeira, “Characterization of the toxigenic potential of Bacillus cereus sensu lato isolated from raw berries and their products,” Foods, vol. 12, no. 21, 2023, Art. no. 4021, doi: 10.3390/foods 12214021.
[93] G. N. Tenea, P. Reyes, D. Molina, and C. Ortega, “Pathogenic microorganisms linked to fresh fruits and juices purchased at low-cost markets in Ecuador, potential carriers of antibiotic resistance,” Antibiotics, vol. 12, no. 2, 2023, Art. no. 236, doi: 10.3390/antibiotics12020236.
[94] N. Al-Karablieh et al., “The impact of treated wastewater irrigation on strawberry development, fruit quality parameters, and microbial and chemical contaminant transfer: A health risk assessment,” Scientia Horticulturae, vol. 329, 2024, Art. no. 113014, doi: 10.1016/ j.scienta.2024.113014.
[95] A. Elbehiry et al., “An overview of the public health challenges in diagnosing and controlling human foodborne pathogens,” Vaccines, vol. 11, no. 4, 2023, Art. no. 725, doi: 10.3390/vaccines 11040725.
[96] O. Oludairo et al., “Review of Salmonella characteristics, history, taxonomy, nomenclature, non typhoidal Salmonellosis (NTS) and Typhoidal Salmonellosis (TS),” Zagazig Veterinary Journal, vol. 50, no. 2, pp. 160–171, 2022, doi: 10.21608/ zvjz.2022.137946.1179.
[97] M. M. Billah and M. S. Rahman, “Salmonella in the environment: A review on ecology, antimicrobial resistance, seafood contaminations, and human health implications,” Journal of Hazardous Materials Advances, vol. 13, 2024, Art. no. 100407, doi: 10.1016/j.hazadv.2024. 100407.
[98] L. Pérez-Lavalle, A. Valero, M. Cejudo-Gómez, and E. Carrasco, “Fate and biofilm formation of Salmonella enterica subsp. enterica serovar Thompson on fresh strawberries stored under refrigeration and room temperatures,” Food Control, vol. 153, 2023, Art. no.109906, doi: 10.1016/j.foodcont.2023.109906.
[99] S. Algarni, S. C. Ricke, S. L. Foley, and J. Han, “The dynamics of the antimicrobial resistance mobilome of Salmonella enterica and related enteric bacteria,” Frontiers in Microbiology, vol. 13, 2022, Art. no. 859854, doi: 10.3389/fmicb. 2022.859854.
[100] S. Petrin, M. Mancin, C. Losasso, S. Deotto, J. E. Olsen, and L. Barco, “Effect of pH and salinity on the ability of Salmonella serotypes to form biofilm,” Frontiers in Microbiology, vol. 13, 2022, Art. no. 821679, doi: 10.3389/ fmicb.2022.821679.
[101] J. Ma et al., “Prevalence, serotype, antimicrobial susceptibility, contamination factors, and control methods of Salmonella spp. in retail fresh fruits and vegetables: A systematic review and meta-analysis,” Comprehensive Reviews in Food Science and Food Safety, vol. 23, no. 1, pp. 225–250, 2025, doi: 10.1111/1541-4337.13407.
[102] K. S. Ng, M. F. Bambace, E. B. Andersen, R. L. Meyer, and C. Schwab, “Environmental pH and compound structure affect the activity of short-chain carboxylic acids against planktonic growth, biofilm formation, and eradication of the food pathogen Salmonella enterica,” Microbiology Spectrum, vol. 12, no. 11, 2024, doi: 10.1128/spectrum.01658-24.
[103] R. M. Morasi, V. L. M. Rall, S. T. A. Dantas, V. P. P. Alonso, and N. C. C. Silva, “Salmonella spp. in low water activity food: Occurrence, survival mechanisms, and thermoresistance,” Journal of Food Science, vol. 87, no. 6, pp. 2310–2323, Art. no. 16152, 2022, doi: 10.1111/1750-3841.16152.
[104] M. Basavaraju and B. S. Gunashree, “Escherichia coli: An Overview of Main Characteristics,” in Escherichia coli – Old and New Insights, M. S. Erjavec, Ed. London, UK: IntechOpen, 2022, doi: 10.5772/intechopen.105508.
[105] R. B. Malabadi, M. R. Sadiya, K. P. Kolkar, and R. K. Chalannavar, “Pathogenic Escherichia coli (E. coli) food borne outbreak: Detection methods and controlling measures,” Magna Scientia Advanced Research and Reviews, vol. 10, no. 01, pp. 052–085, 2024, doi: 10.30574/msarr.2024.10.1.0003.
[106] M. G. Alharbi et al., “The ‘Big Six’: Hidden emerging foodborne bacterial pathogens,” Tropical Medicine and Infectious Disease, vol. 7, no. 11, 2022, Art. no. 356, doi: 10.3390/ tropicalmed7110356.
[107] F. J. Vesga, C. Venegas, V. Flórez-Martinez, A. C. Sánchez-Alfonso, and A. A. Trespalacios, “Origin of fecal contamination in lettuce and strawberries: From microbial indicators, molecular markers, and H. pylori,” Heliyon, vol. 10, no. 17, 2024, Art. no. e36526, doi: 10.1016/j.heliyon.2024.e36526.
[108] K. Yu, M. C. Newman, D. D. Archbold, and T. R. Hamilton-Kemp, “Survival of Escherichia coli O157:H7 on strawberry fruit and reduction of the pathogen population by chemical agents,” Journal of Food Protection, vol. 64, no. 9, pp. 1334–1340, 2001, doi: 10.4315/ 0362-028X-64.9.1334.
[109] D. M. Knudsen, S. A. Yamamoto, and L. J. Harris, “Survival of Salmonella spp. and Escherichia coli O157:H7 on fresh and frozen strawberries,” Journal of Food Protection, vol. 64, no. 10, pp. 1483–1488, 2001, doi: 10.4315/ 0362-028X-64.10.1483
[110] Food Standards Australia New Zealand. “Listeria monocytogenes.” foodstandards. govt.nz. Accessed Jul. 10, 2025. [Online]. Available: https://www.foodstandards.govt.nz/ sites/default/files/publications/Documents/listeria-monocytogenes.pdf
[111] A. Zawiasa and A. Olejnik-Schmidt, “The genetic determinants of Listeria monocytogenes resistance to bacteriocins produced by lactic acid bacteria,” Genes, vol. 16, no. 1, 2025, Art. no. 50, doi: 10.3390/genes16010050.
[112] I. M. Moi et al., “Properties of foodborne pathogens and their diseases,” in Foodborne Pathogens – Recent Advances in Control and Detection. London, UK: IntechOpen, 2023, doi: 10.5772/intechopen.105694.
[113] J. Osek and K. Wieczorek, “Why does Listeria monocytogenes survive in food and food-production environments?,” Journal of Veterinary Research, vol. 67, no. 4, pp. 537–544, 2023, doi: 10.2478/jvetres-2023-0068.
[114] W. G. Zhang, M. S. Zhang, and W. Li, “The antibiotic resistance genes contamination of strawberries with the long-term use of raw, aerobic composting, and anaerobic composting livestock manure: A comparative study,” Frontiers in Environmental Science, vol. 10, 2022, doi: 10.3389/fenvs.2022.902321.
[115] M. Milani, R. Curia, N. V. Shevlyagina, and F. Tatti, “Staphylococcus aureus,” in Bacterial Degradation of Organic and Inorganic Materials. Cham, Switzerland: Springer, pp. 3–20, 2023, doi: 10.1007/978-3-031-26949-3_1.
[116] E. C. S. Venero et al., “Fever-like temperature impacts on Staphylococcus aureus and Pseudomonas aeruginosa interaction, physiology, and virulence both in vitro and in vivo,” BMC Biology, vol. 22, no. 1, 2024, Art. no. 27, doi: 10.1186/s12915-024-01830-3.
[117] BiologyInsights. “Staphylococcus morphology and structural characteristics.” biologyinsights.com. Accessed: May 26, 2025. [Online]. Available: https://biologyinsights.com/staphylococcus-morphology-and-structural-characteristics/
[118] X. Liao, X. Chen, A. S. Sant’Ana, J. Feng, and T. Ding, “Pre-exposure of foodborne Staphylococcus aureus isolates to organic acids induces cross-adaptation to mild heat,” Microbiology Spectrum, vol. 11, no. 3, 2023, doi: 10.1128/spectrum.03832-22.
[119] A. Austrich-Comas, C. Serra-Castelló, M. Viella, P. Gou, A. Jofré, and S. Bover-Cid, “Growth and non-thermal inactivation of Staphylococcus aureus in sliced dry-cured ham in relation to water activity, packaging type and storage temperature,” Foods, vol. 12, no. 11, 2023, Art. no. 2199, doi: 10.3390/foods12112199.
[120] Y. Yoon, K. Kim, M. Nam, W. B. Shim, J. G. Ryu, D. H. Kim, O. J. You, and D. H. Chung, “Microbiological assessment in strawberry production and recommendations to establish a good agricultural practice system,” Foodborne Pathogens and Disease, vol. 7, no. 12, pp. 1511–1519, 2010, doi: 10.1089/fpd.2010.0611.
[121] S. R. Kim et al., “Screening of Staphylococcus aureus and Staphylococcal Enterotoxin a, b, c gene in strains isolated from strawberry farms in Western Gyeongnam,” Korean Journal of Food Science and Technology, vol. 37, no. 2, pp. 321–327, 2005.
[122] U. Acosta-González, S. G. Leyva-Mir, H. V. Silva-Rojas, and A. Rebollar-Alviter, “Preventive and curative effects of treatments to manage strawberry root and crown rot caused by Neopestalotiopsis rosae,” Plant Disease, vol. 108, no. 5, pp. 1278–1288, 2024, doi: 10.1094/PDIS-05-23-0958-RE.
[123] L. Capriotti et al., “RNA interference-based strategies to control Botrytis cinerea infection in cultivated strawberry,” Plant Cell Reports, vol. 43, no. 8, 2024, Art. no. 201, doi: 10.1007/s00299-024-03288-7.
[124] S. Sabbadini, L. Capriotti, H. Jin, A. Ricci, G. Giovanetti, and B. Mezzetti, “RNAi-based approaches to induce resistance against grey mold disease in strawberry,” Acta Horticulturae, no. 1309, pp. 209–216, 2021, doi: 10.17660/ActaHortic.2021.1309.31.
[125] G. Smagghe, “RNA interference in fungal plant pathogens: What do we know from Botrytis cinerea with research hotspots and gaps, and what are the future directions?,” Journal of Fungi, vol. 11, no. 7, 2025, Art. no. 498, doi: 10.3390/jof11070498.
[126] M. Taoussi et al., “Non-chemical management of fungal diseases in berries: A review,” CABI Reviews, vol. 19, 2024, Art. no. 0032, doi: 10.1079/cabireviews.2024.0032.
[127] T. Lei, J. Qian, and C. Yin, “Equilibrium modified atmosphere packaging on postharvest quality and antioxidant activity of strawberry,” International Journal of Food Science & Technology, vol. 57, no. 11, pp. 7125–7134, 2022, doi: 10.1111/ijfs.16052.
[128] I. Steinka and A. Kukułowicz, “Identification and study of the behavior of S. aureus and S. epidermidis in fresh and frozen strawberries,” Acta Scientiarum Polonorum Technologia Alimentaria, vol. 17, no. 1, pp. 27–35, 2018, doi: 10.17306/J.AFS.0535.
[129] J. J. Higuera-Sobrino, R. Blanco-Portales, E. Moyano, A. Rodríguez-Franco, J. Muñoz-Blanco, and J. L. Caballero, “A HIGS approach targeting the DCL1, CYP51 and CHS genes of the pathogen to control Colletotrichum acutatum infection of strawberry,” Acta Horticulturae, vol. 1381, pp. 149–156, 2023, doi: 10.17660/ ActaHortic.2023.1381.20.
[130] D. Eroğul, M. Gundogdu, F. Sen, and A. Tas, “Impact of postharvest calcium chloride treatments on decay rate and physicochemical quality properties in strawberry fruit,” BMC Plant Biology, vol. 24, 2024, Art. no. 1088, doi: 10.1186/s12870-024-05792-0.
[131] J. Brockelt, R. Dammann, J. Griese, A. Weiss, M. Fischer, and M. Creydt, “Storage profiling: Evaluating the effect of modified atmosphere packaging on metabolomic changes of strawberries (Fragaria × ananassa),” Metabolites, vol. 15, no. 5, 2025, Art. no. 330, doi: 10.3390/ metabo15050330.
[132] M. F. Z. Mulla, T. T. Shonte, and S. Pathania, “Quality parameters and shelf life of strawberry (cv. Centenary) fruits as affected by active modified atmosphere packaging,” International Journal of Food Science and Technology, vol. 60, no. 1, 2025, doi: 10.1093/ ijfood/vvaf010.
[133] E. Lashkari, “Effect of modified atmosphere packaging (MAP) on the stability of anthocyanins and degradation of phenolic compounds during postharvest storage of pomegranate fruit,” Food and Nutrition Sciences, vol. 13, no. 03, pp. 316–335, 2022, doi: 10.4236/fns.2022.133024.
[134] L. Zhao et al., “Changes in quality and microbiome composition of strawberry fruits following postharvest application of Debaryomyces hansenii, a yeast biocontrol agent,” Postharvest Biology and Technology, vol. 202, 2023, Art. no. 112379, doi: 10.1016/ j.postharvbio.2023.112379.
[135] P. Liu et al., “Biocontrol potential of Trichoderma asperellum CMT10 against strawberry root rot disease,” Horticulturae, vol. 10, no. 3, 2024, Art. no. 246, doi: 10.3390/ horticulturae10030246.
[136] P. Ramudingana, N. Makhado, C. N. Kamutando, M. S. Thantsha, and T. P. Mamphogoro, “Fungal biocontrol agents in the management of postharvest losses of fresh produce—A comprehensive review,” Journal of Fungi, vol. 11, no. 1, 2025, Art. no. 82, doi: 10.3390/jof 11010082.
[137] V. Antoni, E. Cortese, and L. Navazio, “Plasma-activated water to foster sustainable agriculture: Evidence and quest for the fundamentals,” Plants, People, Planet, 2025, doi: 10.1002/ppp3.70025.
[138] K. S. Wong, N. S. L. Chew, M. Low, and M. K. Tan, “Plasma-activated water: Physicochemical properties, generation techniques, and applications,” Processes, vol. 11, no. 7, 2023, Art. no. 2213, doi: 10.3390/pr11072213.
[139] K. Hadinoto, B. A. Niemira, and F. J. Trujillo, “A review on plasma‐activated water and its application in the meat industry,” Comprehensive Reviews in Food Science and Food Safety, vol. 22, no. 6, pp. 4993–5019, 2023, doi: 10.1111/1541-4337.13250.
[140] B. Boopathy, D. Mukherjee, V. Nishanth, A. R. Chowdhury, D. Chakravortty, and L. Rao, “Generation of species-specific high-strength plasma activated water at neutral pH and its antimicrobial characteristics,” Plasma Chemistry and Plasma Processing, vol. 44, no. 2, pp. 1003–1017, 2024, doi: 10.1007/s11090-023-10439-3.
[141] M. Rahman et al., “Plasma-activated water for food safety and quality: A review of recent developments,” International Journal of Environmental Research and Public Health, vol. 19, no. 11, 2022, Art. no. 6630, doi: 10.3390/ijerph19116630.
[142] J. Wang, Y. Cui, M. Zhang, L. Wang, A. Aihaiti, and R. Maimaitiyiming, “Pulsed-control plasma-activated water: An emerging technology to assist ultrasound for fresh-cut produce washing,” Ultrasonics Sonochemistry, vol. 102, 2024, Art. no. 106739, doi: 10.1016/ j.ultsonch.2023.106739.
[143] E. Pagán, F. Pavli, S. Happiette, D. Berdejo, R. Gatt, R. Pagán, V. Valdramidis, and D. García-Gonzalo, “Isolation and characterization of resistant variants of Salmonella Typhimurium after sequential exposure to plasma activated water (PAW),” Innovative Food Science and Emerging Technologies, vol. 93, 2024, Art. no. 103633, doi: 10.1016/j.ifset.2024.103633.
[144] F. S. Miranda, V. K. F. Tavares, M. P. Gomes, N. F. A. Neto, W. Chiappim, G. Petraconi, R. S. Pessoa, and C. Y. Koga-Ito, “Physicochemical characteristics and antimicrobial efficacy of plasma-activated water produced by an air-operated coaxial dielectric barrier discharge plasma,” Water, vol. 15, no. 23, 2023, Art. no. 4045, doi: 10.3390/w15234045.
[145] K. L. M. Taaca, E. I. Prieto, and M. R. Vasquez, “Atmospheric pressure plasma treatment of chitosan-acrylic acid blends,” Journal of Vacuum Science and Technology B, vol. 41, no. 3, Art. no. 034001, 2023, doi: 10.1116/6.0002335.
[146] Y. Gao, K. Francis, and X. Zhang, “Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture,” Food Research International, vol. 157, 2022, Art. no. 111246, doi: 10.1016/ j.foodres.2022.111246.
[147] S. Pandey et al., “Selective generation of nitrate and nitrite in plasma activated water and its physicochemical parameters analysis,” Physics Letters A, vol. 474, 2023, Art. no. 128832, doi: 10.1016/j.physleta.2023.128832.
[148] M. Shaji, A. Rabinovich, M. Surace, C. Sales, and A. Fridman, “Physical properties of plasma-activated water,” Plasma, vol. 6, no. 1, pp. 45–57, Art. no. 5, 2023, doi: 10.3390/ plasma6010005.
[149] A. K. Aranda-Rivera, A. Cruz-Gregorio, Y. L. Arancibia-Hernández, E. Y. Hernández-Cruz, and J. Pedraza-Chaverri, “RONS and oxidative stress: An overview of basic concepts,” Oxygen, vol. 2, no. 4, pp. 437–478, Art. no. 30, 2022, doi: 10.3390/oxygen2040030.
[150] Y. Zhao, M. L. Bhavya, A. Patange, D. W. Sun, and B. K. Tiwari, “Plasma‐activated liquids for mitigating biofilms on food and food contact surfaces,” Comprehensive Reviews in Food Science and Food Safety, vol. 22, no. 3, pp. 1654–1685, 2023, doi: 10.1111/1541-4337.13126
[151] B. Xia, H. K. N. Vyas, S. A. Rice, T. P. Newsome, P. J. Cullen, and A. Mai-Prochnow, “Antimicrobial mechanism of in-situ plasma activated water treatment of pathogenic Escherichia coli and Staphylococcus aureus biofilms,” Biofilm, vol. 10, 2024, doi: 10.1016/j.bioflm.2025.100303.
[152] G. Han, S. Chen, S. Su, Y. Huang, B. Liu, and H. Sun, “A review and perspective on micro and nanobubbles: What they are and why they matter,” Minerals Engineering, vol. 189, 2022, Art. no. 107906, doi: 10.1016/j.mineng.2022. 107906.
[153] OK Engineering. “What is fine bubbles,” OK Nozzle. oknozzle.com. Accessed: May 27, 2025. [Online]. Available: https://oknozzle.com/ mb-nb/
[154] A. D. Gupta, V. K. Jaiswal, K. Chabhadiya, R. S. Singh, M. K. Gupta, and H. Singh, “A critical review on the properties and applications of bulk micro and nanobubbles for the degradation of organic pollutants in wastewater treatment,” Science of the Total Environment, vol. 924, 2025, Art. no. 179310, doi: 10.1016/j.scitotenv.2025.179310.
[155] S. Baram, M. Weinstien, G. Kaplan, and S. Friedman, “The effects of drip irrigation with nanobubbles aerated water on soil N transformation,” EGU General Assembly Conference Abstracts, vol. 2022, 2022, Art. no. EGU22-6937, doi: 10.5194/egusphere-egu22-6937.
[156] F. del Moral Torres, R. H. Maqueda, and D. E. M. Abad, “Enhancing root distribution, nitrogen, and water use efficiency in greenhouse tomato crops using nanobubbles,” Horticulturae, vol. 10, no. 5, Art. no. 463, pp. 1–15, 2024, doi: 10.3390/horticulturae10050463.
[157] M. Ovissipour. “Nanobubbles as an emerging sanitation technology.” vtechworks.lib.vt.edu. Accessed: Jun. 8, 2025. [Online]. Available: https://vtechworks.lib.vt.edu/items/62b135f1-d35a-46cb-9be7-648ea503391d.
[158] M. Javed, A. Matloob, F. Ettoumi, A. R. Sheikh, R. Zhang, and Y. Xu, “Novel nanobubble technology in food science: Application and mechanism,” Food Innovation and Advances, vol. 2, no. 2, pp. 135–144, 2023, doi: 10.48130/FIA-2023-0014.
[159] J. Jia et al., “Full life circle of micro-nano bubbles: Generation, characterization and applications,” Chemical Engineering Journal, vol. 471, 2023, Art. no. 144621, doi: 10.1016/j.cej.2023.144621.
[160] X. Ma, M. Li, X. Xu, and C. Sun, “Coupling effects of ionic surfactants and electrolytes on the stability of bulk nanobubbles,” Nanomaterials, vol. 12, no. 19, 2022, Art. no. 3450, doi: 10.3390/nano12193450.
[161] A. Dukhin and R. Xu, “A new approach to explaining nano-bubbles paradoxical longevity,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 700, 2024, Art. no. 134805, doi: 10.1016/j.colsurfa.2024.134805.
[162] Y. D. Jun, “Degassing dissolved oxygen through bubbling: The contribution and control of vapor bubbles,” Processes, vol. 11, no. 11, 2023, Art. no. 3158, doi: 10.3390/pr11113158.
[163] J. Silva, L. Arias-Torres, C. Carlesi, and G. Aroca, “Use of nanobubbles to improve mass transfer in bioprocesses,” Processes, vol. 12, no. 6, 2024, Art. no. 1227, doi: 10.3390/ pr12061227.
[164] K. Yasuda, “Characteristics of ultrafine bubbles (bulk nanobubbles) and their application to particle-related technology,” KONA Powder and Particle Journal, vol. 41, pp. 183–196, 2024, doi: 10.14356/kona.2024004.
[165] A. Luo, T. Wang, P. Luo, Z. Zheng, M. Fiallos, Y. Bian, and S. T. Khuan, “Mechanism by which micro-nano bubbles impact biofilm growth in drinking water distribution systems,” Environmental Science: Water Research & Technology, vol. 11, no. 3, pp. 754–767, 2025, doi: 10.1039/D4EW00704B.
[166] J. Silva, L. Arias-Torres, C. Carlesi, and G. Aroca, “Use of nanobubbles to improve mass transfer in bioprocesses,” Processes, vol. 12, no. 6, 2024, Art. no. 1227, doi: 10.3390/ pr12061227.
[167] K. Moonsub, P. Seesuriyachan, D. Boonyawan, and W. Wattanutchariya, “Synergistic effect of plasma-activated water with micro/nanobubbles, ultraviolet photolysis, and ultrasonication on enhanced Escherichia coli inactivation in chicken meat,” Processes, vol. 12, no. 3, 2024, Art. no. 567, doi: 10.3390/ pr12030567.
[168] P. Naewkanya and A. Petiraksakul, “The optimization of aerobic bacteria inactivation in tilapia (Oreochromis niloticus) fillets using micro-nano bubbles of carbon dioxide and shelf-life extension,” Applied Science and Engineering Progress, vol. 18, no. 1, 2024, Art. no. 7500, doi: 10.14416/j.asep.2024.08.002.
[169] X. Wang, J. Zuo, Z. Yan, J. Shi, Q. Wang, and W. Guan, “Effect of ozone micro-nanobubble treatment on postharvest preservation of spinach,” Food Science, vol. 41, no. 23, pp. 190–196, 2020, doi: 10.7506/spkx1002-6630-20191102-014.
[170] V. Rathore, C. Patil, A. Sanghariyat, and S. K. Nema, “Design and development of dielectric barrier discharge setup to form plasma-activated water and optimization of process parameters,” The European Physical Journal D, vol. 76, no. 5, p. 77, 2022, doi: 10.1140/ epjd/s10053-022-00397-4.
[171] U. Chavan and S. Patil, “Water treatment using atmospheric pressure plasma: Dielectric barrier discharge and corona discharge method, and reactive species analysis,” E3S Web of Conferences, vol. 559, 2024, Art. no. 03006, doi: 10.1051/e3sconf/202455903006.
[172] N. F. A. Neto et al., “Physical and chemical characteristics of plasma-activated water generated by hybrid dielectric barrier discharge and gliding arc discharge,” Journal of Physics D: Applied Physics, vol. 57, no. 41, 2024, Art. no. 415204, doi: 10.1088/1361-6463/ad61f4.
[173] T. H. Kim et al., “Development of DC power supply for plasma activated water using gliding arc discharge,” IEEE Transactions on Plasma Science, vol. 51, no. 10, pp. 2805–2812, 2023, doi: 10.1109/TPS.2023.3301932.
[174] F. do Nascimento, A. da G. Sampaio, N. V. M. Milhan, A.V. L. Gontijo, P. Mattern, and T. Gerling, “A low cost, flexible atmospheric pressure plasma jet device with good antimicrobial efficiency,” IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 8, no. 3, pp. 307–322, 2024, doi: 10.1109/TRPMS.2023.3342709.
[175] B. Singh, N. Shukla, C. H. Cho, B. S. Kim, M. H. Park, and K. Kim, “Effect and application of micro- and nanobubbles in water purification,” Toxicology and Environmental Health Sciences, vol. 13, no. 1, pp. 9–16, 2021, doi: 10.1007/s13530-021-00081-x.
[176] A. Singh, A. S. Sekhon, P. Unger, M. Babb, Y. Yang, and M. Michael, “Impact of gas micro‐nano‐bubbles on the efficacy of commonly used antimicrobials in the food industry,” Journal of Applied Microbiology, vol. 130, no. 4, pp. 1092–1105, 2021, doi: 10.1111/jam.14840.
DOI: 10.14416/10.14416/j.asep.2025.09.008
Refbacks
- There are currently no refbacks.