Ultrasound-Assisted Liquid Antisolvent Method Enables Rapid Synthesis of Bioactive Nanocurcumin
Abstract
Keywords
[1] B. Zheng and D. J. McClements, “Formulation of more efficacious curcumin delivery systems using colloid science: Enhanced solubility, stability, and bioavailability,” Molecules, vol. 25, no. 12, pp. 1–25, 2020, doi: 10.3390/ molecules25122791.
[2] Q. Kanwal et al., “Curcumin nanoparticles: Physicochemical fabrication, characterization, antioxidant, enzyme inhibition, molecular docking and simulation studies,” RSC Advances, vol. 13, no. 32, pp. 22268–22280, 2023, doi: 10.1039/d3ra01432k.
[3] Deepika, M. Prasad, A. Salar, and R. K. Salar, “In vitro anticancer activity of curcumin loaded chitosan nanoparticles (CLCNPs) against Vero cells,” Pharmacological Research – Modern Chinese Medicine, vol. 3, p. 100116, 2022, doi: 10.1016/j.prmcm.2022.100116.
[4] A. Rajasekar, T. Devasena, S. Suresh, B. Senthil, R. Sivaramakrishnan, and A. Pugazhendhi, “Curcumin nanospheres and nanorods: Synthesis, characterization and anticancer activity,” Process Biochemistry, vol. 112, pp. 248–253, 2022, doi: 10.1016/j.procbio.2021.12.007.
[5] L. Jamir, V. Kumar, J. Kaur, S. Kumar, and H. Singh, “Composition, valorization and therapeutical potential of molasses: A critical review,” Environmental Technology Reviews, vol. 10, no. 1, pp. 131–142, 2021, doi: 10.1080/ 21622515.2021.1892203.
[6] M. Hegde, S. Girisa, B. BharathwajChetty, R. Vishwa, and A. B. Kunnumakkara, “Curcumin formulations for better bioavailability: What we learned from clinical trials thus far?,” ACS Omega, vol. 8, no. 12, pp. 10713–10746, 2023, doi: 10.1021/acsomega.2c07326.
[7] S. Aghajanpour et al., “Applying liquisolid technique to enhance curcumin solubility: A central composite design study,” Chemical Papers, 2024, doi: 10.1007/s11696-024-03741-7.
[8] D. H. Hanna and G. R. Saad, “Nanocurcumin: Preparation, characterization and cytotoxic effects towards human laryngeal cancer cells,” RSC Advances, vol. 10, no. 35, pp. 20724–20737, 2020, doi: 10.1039/d0ra03719b.
[9] Z. Sayyar and H. Jafarizadeh-Malmiri, “Preparation of curcumin nanodispersions using subcritical water – Screening of different emulsifiers,” Chemical Engineering & Technology, vol. 43, no. 2, pp. 263–272, 2020, doi: 10.1002/ ceat.201900415.
[10] J. Górnicka, M. Mika, O. Wróblewska, P. Siudem, and K. Paradowska, “Methods to improve the solubility of curcumin from turmeric,” Life, vol. 13, no. 1, pp. 1–13, 2023, doi: 10.3390/life13010207.
[11] W. Gu, D. Liu, and J. Sun, “Co-crystallization of curcumin for improved photodynamic inactivation of Vibrio parahaemolyticus and its application for the preservation of cooked clams,” International Journal of Food Microbiology, vol. 378, p. 109816, 2022, doi: 10.1016/j.ijfoodmicro.2022.109816.
[12] I. A. Walbi et al., “Development of a curcumin-loaded lecithin/chitosan nanoparticle utilizing a Box–Behnken design of experiment: Formulation design and influence of process parameters,” Polymers (Basel), vol. 14, no. 18, 2022, doi: 10.3390/polym14183758.
[13] Y. Chen et al., “Design and evaluation of inhalable nanocrystals embedded microparticles with enhanced redispersibility and bioavailability for breviscapine,” Powder Technology, vol. 377, pp. 128–138, 2021, doi: 10.1016/j.powtec.2020. 08.040.
[14] L. Pudziuvelyte, A. Siauruseviciute, R. Morkuniene, R. Lazauskas, and J. Bernatoniene, “Influence of technological factors on the quality of chitosan microcapsules with Boswellia serata L. essential oil,” Pharmaceutics, vol. 14, no. 6, 2022, doi: 10.3390/pharmaceutics14061259.
[15] A. Behnamnik, M. Vazifedoost, Z. Didar, and B. Hajirostamloo, “Evaluation of physicochemical, structural, and antioxidant properties of microencapsulated seed extract from Securigera securidaca by co-crystallization method during storage time,” Biocatalysis and Agricultural Biotechnology, vol. 35, p. 102090, 2021, doi: 10.1016/j.bcab.2021.102090.
[16] G. K. Pamunuwa, M. Prasadani, T. U. G. Nanayakkara, and S. N. Atapattu, “Effect of liposomal encapsulation of curcumin and α-tocopherol on sensory and physicochemical properties, and retention of antioxidant capacity of fortified cookies during baking,” Food Chemistry Advances, vol. 3, 2023, doi: 10.1016/ j.focha.2023.100504.
[17] A. Bonaccorso et al., “Optimization of curcumin nanocrystals as promising strategy for nose-to-brain delivery application,” Pharmaceutics, vol. 12, no. 5, 2020, doi: 10.3390/pharmaceutics 12050476.
[18] A. M. Abdelmonem, A. Lavrentieva, and N. C. Bigall, “Fabrication of surface-functionalizable amphiphilic curcumin nanogels for biosensing and biomedical applications,” Chemical Papers, vol. 78, no. 1, pp. 533–546, 2024, doi: 10.1007/ s11696-023-03108-4.
[19] N. M. Elbaz, L. M. Tatham, A. Owen, S. Rannard, and T. O. McDonald, “Redispersible nanosuspensions as a plausible oral delivery system for curcumin,” Food Hydrocolloids, vol. 121, p. 107005, 2021, doi: 10.1016/j.foodhyd. 2021.107005.
[20] F. Sadeghi, M. Ashofteh, A. Homayouni, M. Abbaspour, A. Nokhodchi, and H. A. Garekani, “Antisolvent precipitation technique: A very promising approach to crystallize curcumin in presence of polyvinyl pyrrolidon for solubility and dissolution enhancement,” Colloids and Surfaces B: Biointerfaces, vol. 147, pp. 258–264, 2016, doi: 10.1016/j.colsurfb.2016.08.004.
[21] A. V. Dighe, P. K. R. Podupu, P. Coliaie, and M. R. Singh, “Three-step mechanism of antisolvent crystallization,” Crystal Growth & Design, vol. 22, no. 5, pp. 3119–3127, 2022, doi: 10.1021/ acs.cgd.2c00014.
[22] J. Luo et al., “Rapid and sustainable production of nano and micro medicine crystals via freeze-dissolving technology,” Powder Technology, vol. 443, p. 119913, 2024, doi: 10.1016/j.powtec. 2024.119913.
[23] K. Araki et al., “Application of a microreactor to pharmaceutical manufacturing: Preparation of amorphous curcumin nanoparticles and controlling the crystallinity of curcumin nanoparticles by ultrasonic treatment,” AAPS PharmSciTech, vol. 21, no. 1, pp. 1–9, 2020, doi: 10.1208/s12249-019-1418-8.
[24] P. Kanakasabai, S. Sivamani, and K. Thirumavalavan, “Box–Behnken design and analysis for liquid–liquid extraction of methyl red dye from its aqueous solution with benzene,” Chemical Papers, vol. 77, no. 11, pp. 7225–7235, 2023, doi: 10.1007/s11696-023-03013-w.
[25] C. S. Dzah et al., “The effects of ultrasound-assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review,” Food Bioscience, vol. 35, p. 100547, 2020, doi: 10.1016/j.fbio.2020.100547.
[26] S. Som et al., “Quality by design-based crystallization of curcumin using liquid antisolvent precipitation: Micromeritic, biopharmaceutical, and stability aspects,” Assay and Drug Development Technologies, vol. 18, no. 1, pp. 11–33, 2020, doi: 10.1089/adt.2018.913.
[27] C. Tan, J. Xie, X. Zhang, J. Cai, and S. Xia, “Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin,” Food Hydrocolloids, vol. 57, pp. 236–245, 2016, doi: 10.1016/j.foodhyd. 2016.01.021.
[28] Z. Wu et al., “Rational fabrication of folate-conjugated zein/soy lecithin/carboxymethyl chitosan core-shell nanoparticles for delivery of docetaxel,” ACS Omega, vol. 7, no. 15, pp. 13371–13381, 2022, doi: 10.1021/acsomega. 2c01270.
[29] N. Tshilande, L. Mammino, and M. K. Bilonda, “The study of molecules and processes in solution: An overview of questions, approaches and applications,” Computation, vol. 12, no. 4, 2024, doi: 10.3390/computation12040078.
[30] S. Xue, J. Xu, Y. Han, J. Zhang, and W. Li, “Solvent–antisolvent competitive interactions mediate imidacloprid polymorphs in antisolvent crystallization,” Crystal Growth & Design, vol. 21, no. 8, pp. 4318–4328, 2021, doi: 10.1021/ acs.cgd.1c00070.
[31] I. Szilagyi, T. Szabo, A. Desert, G. Trefalt, T. Oncsik, and M. Borkovec, “Particle aggregation mechanisms in ionic liquids,” Physical Chemistry Chemical Physics, vol. 16, no. 20, pp. 9515–9524, 2014, doi: 10.1039/c4cp00804a.
[32] A. Cardellini, M. Fasano, M. B. Bigdeli, E. Chiavazzo, and P. Asinari, “Thermal transport phenomena in nanoparticle suspensions,” Journal of Physics: Condensed Matter, vol. 28, no. 48, 2016, doi: 10.1088/0953-8984/28/48/483003.
[33] Y. Wang, Z. Li, S. Fayu, F. Li, and W. Wang, “Preparation of curcumin submicron particles by supercritical antisolvent method with external adjustable annular gap nozzle,” Scientific Reports, vol. 15, no. 1, pp. 1–17, 2025, doi: 10.1038/s41598-025-87787-x.
[34] L. Liu, C. Yao, S. Zhao, Z. Liu, and G. Chen, “Enhanced antisolvent processes in an ultrasonic capillary microreactor: Cavitation, mixing and application in mini-emulsion preparation,” Chemical Engineering Journal, vol. 466, p. 143426, 2023, doi: 10.1016/j.cej.2023.143426.
[35] J. Liu, M. Svärd, P. Hippen, and Å. C. Rasmuson, “Solubility and crystal nucleation in organic solvents of two polymorphs of curcumin,” Journal of Pharmaceutical Sciences, vol. 104, no. 7, pp. 2183–2189, 2015, doi: 10.1002/jps. 24463.
[36] B. Niu, Z. Li, C. Luan, and B. Zhao, “The dissolution and bioavailability of curcumin reinforced by loading into porous starch under solvent evaporation,” International Journal of Biological Macromolecules, vol. 287, 2025, doi: 10.1016/j.ijbiomac.2024.138611.
[37] S. S. Hettiarachchi, S. P. Dunuweera, A. N. Dunuweera, and R. M. G. Rajapakse, “Synthesis of curcumin nanoparticles from raw turmeric rhizome,” ACS Omega, vol. 6, no. 12, pp. 8246–8252, 2021, doi: 10.1021/acsomega.0c06314.
[38] C. Siebenmorgen, A. Poortinga, and P. van Rijn, “Sono-processes: Emerging systems and their applicability within the (bio-)medical field,” Ultrasonics Sonochemistry, vol. 100, p. 106630, 2023, doi: 10.1016/j.ultsonch.2023.106630.
[39] F. Kurniawansyah, R. Mammucari, and N. R. Foster, “Polymorphism of curcumin from dense gas antisolvent precipitation,” Powder Technology, vol. 305, pp. 748–756, 2017, doi: 10.1016/ j.powtec.2016.10.067.
[40] A. A. Thorat and S. V. Dalvi, “Ultrasound-assisted modulation of concomitant polymorphism of curcumin during liquid antisolvent precipitation,” Ultrasonics Sonochemistry, vol. 30, pp. 35–43, 2016, doi: 10.1016/j.ultsonch. 2015.11.025.
[41] S. Shome, A. Das Talukdar, S. Tewari, S. Choudhury, M. K. Bhattacharya, and H. Upadhyaya, “Conjugation of micro/nanocurcumin particles to ZnO nanoparticles changes the surface charge and hydrodynamic size thereby enhancing its antibacterial activity against Escherichia coli and Staphylococcus aureus,” Biotechnology and Applied Biochemistry, vol. 68, no. 3, pp. 603–615, Jun. 2021, doi: 10.1002/bab.1968.
[42] R. Kumar et al., “Nanoparticle preparation of pharmaceutical compounds via wet milling: Current status and future prospects,” Powder Technology, vol. 435, p. 119430, 2024, doi: 10.1016/j.powtec.2024.119430.
[43] M. Brycka et al., “Heat capacity and thermodynamic functions of crystalline and amorphous forms of Lovastatin,” Scientific Reports, vol. 15, no. 1, pp. 1–12, 2025, doi: 10.1038/s41598-025-05075-0.
[44] S. Ahlawat, V. Budhwar, and M. Choudhary, “Enhancement of curcumin’s physicochemical properties by developing its eutectic mixtures,” Journal of Applied Pharmaceutical Research, vol. 12, no. 1, pp. 71–81, 2024, doi: 10.18231/ j.joapr.2024.12.1.71.81.
[45] U. Bagale, A. Kadi, A. Malinin, I. Potoroko, S. Sonawane, and S. Potdar, “Ultrasound-assisted stable curcumin nanoemulsion and its application in bakery product,” International Journal of Food Science, vol. 2022, 2022, doi: 10.1155/2022/4784794.
[46] S. Mottola and I. De Marco, “Curcumin/carrier coprecipitation by supercritical antisolvent route,” Pharmaceutics, vol. 16, no. 3, 2024, doi: 10.3390/pharmaceutics16030352.
[47] Z. Zhao et al., “Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO₂,” International Journal of Nanomedicine, vol. 10, pp. 3171–3181, 2015, doi: 10.2147/IJN.S80434.
[48] J. Han et al., “Deaggregation and crystallization inhibition by small amount of polymer addition for a co-amorphous curcumin-magnolol system,” Pharmaceutics, vol. 13, no. 10, 2021, doi: 10.3390/pharmaceutics13101725.
[49] H. Wang et al., “Improving the dissolution rate and bioavailability of curcumin via co-crystallization,” Pharmaceuticals, vol. 17, no. 4, 2024, doi: 10.3390/ph17040489.
[50] D. Yang et al., “Construction, characterization and bioactivity evaluation of curcumin nanocrystals with extremely high solubility and dispersion prepared by ultrasound-assisted method,” Ultrasonics Sonochemistry, vol. 104, p. 106835, 2024, doi: 10.1016/j.ultsonch.2024. 106835.
[51] Vikash and V. Kumar, “Ultrasonic-assisted de-agglomeration and power draw characterization of silica nanoparticles,” Ultrasonics Sonochemistry, vol. 65, p. 105061, 2020, doi: 10.1016/j.ultsonch. 2020.105061.
[52] R. Kumar, A. K. Thakur, N. Banerjee, A. Kumar, G. K. Gaurav, and R. K. Arya, “Liquid antisolvent crystallization of pharmaceutical compounds: Current status and future perspectives,” Drug Delivery and Translational Research, vol. 13, no. 2, pp. 400–418, 2023, doi: 10.1007/s13346-022-01219-1.
[53] G. Yu et al., “Preparation of daidzein microparticles through liquid antisolvent precipitation under ultrasonication,” Ultrasonics Sonochemistry, vol. 79, 2021, doi: 10.1016/j.ultsonch.2021.105772.
[54] M. T. D. C. Español et al., “Ultrasound-assisted biomimetic synthesis of MOF-Hap nanocomposite via 10×SBF-like for the photocatalytic degradation of metformin,” Applied Science and Engineering Progress, vol. 17, no. 2, pp. 1–16, 2024, doi: 10.14416/j.asep.2023.11.002.
[55] Y. Hu et al., “A review on the effect of ultrasonic-assisted curing on the quality of meat products,” Applied Science and Engineering Progress, vol. 18, no. 2, pp. 1–18, 2025, doi: 10.14416/j.asep.2024.11.006.DOI: 10.14416/j.asep.2026.01.005
Refbacks
- There are currently no refbacks.
Applied Science and Engineering Progress







