Characterization of Banana Fiber-Reinforced Bioplastics for Environmentally Friendly Packaging Applications
Abstract
Keywords
[1] R. Geyer, J. R. Jambeck, and K. L. Law, “Production, use, and fate of all plastics ever made,” Science Advances, vol. 3, 2017, Art. no. e1700782, doi: 10.1126/sciadv.1700782.
[2] J. J. Andrew and H. N. Dhakal, “Sustainable biobased composites for advanced applications: Recent trends and future opportunities – A critical review,” Composites Part C: Open Access, vol. 7, 2022, Art. no. 100220, doi: 10.1016/j.jcomc.2021.100220.
[3] O. A. Oyedeji, J. Hess, X. Zhao, L. Williams, R. Emerson, and E. Webb, “Exploring biofiber properties and their influence on biocomposite tensile properties,” Polymer International, 2024, doi: 10.1002/pi.6696.
[4] V. Guna et al., “Biofibers and biocomposites from sabai grass: A unique renewable resource,” Carbohydrate Polymers, vol. 218, pp. 243–249, 2019, doi: 10.1016/j.carbpol.2019.04.085.
[5] S. Chandgude and S. Salunkhe, “Biofiber-reinforced polymeric hybrid composites: An overview on mechanical and tribological performance,” Polymer Composites, vol. 41, no. 10, pp. 3908–3939, 2020, doi: 10.1002/pc.25801.
[6] S. B. Nagaraju et al., “Mechanical characterization and water absorption behavior of waste coconut leaf stalk fiber reinforced hybrid polymer composite: Impact of chemical treatment,” Applied Science and Engineering Progress, vol. 17, no. 3, 2024, Art. no. 7371, doi: 10.14416/j.asep.2024.05.003.
[7] R. Yeetsorn, W. Wanchan, and M. Abbas, “Fiber surface treatments for lightweight PA6 composites,” Applied Science and Engineering Progress, vol. 18, no. 2, 2025, Art. no. 7543, doi: 10.14416/j.asep.2024. 09.004.
[8] M. N. F. Norrrahim et al., “Chemical pretreatment of lignocellulosic biomass for the production of bioproducts: An overview,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 588–605, 2021, doi: 10.14416/j.asep.2021.07.004.
[9] E. M. Ernest and A. C. Peter, “Application of selected chemical modification agents on banana fiber for enhanced composite production,” Cleaner Materials, vol. 5, 2022, Art. no. 100131, doi: 10.1016/j.clema.2022. 100131.
[10] P. Gairola, Y. Tyagi, and N. Gupta, “Mechanical properties evaluation of banana fiber reinforced polymer composites: A review,” Acta Innovations, vol. 42, pp. 59–70, 2022, doi: 10.32933/ActaInnovations.42.5.
[11] M. C. de Souza et al., “A review of natural fibers reinforced composites for railroad applications,” Applied Science and Engineering Progress, vol. 15, no. 2, 2022, Art. no. 5800, doi: 10.14416/ j.asep.2022.03.001.
[12] M. E. Hoque, A. M. Rayhan, and S. I. Shaily, “Natural fiber-based green composites: Processing, properties and biomedical applications,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 689–718, 2021, doi: 10.14416/j.asep.2021.09.005.
[13] S. K. Palaniappan, M. K. Singh, S. M. Rangappa, and S. Siengchin, “Eco-friendly biocomposites: A step towards achieving sustainable development goals,” Applied Science and Engineering Progress, vol. 17, no. 4, 2024, Art. no. 7373, doi: 10.14416/j.asep.2024.02.003.
[14] W. Jordan and P. Chester, “Improving the properties of banana fiber reinforced polymeric composites by treating the fibers,” Procedia Engineering, vol. 200, pp. 283–289, 2017, doi: 10.1016/j.proeng.2017.07.040.
[15] U. K. Komal, V. Verma, T. Aswani, N. Verma, and I. Singh, “Effect of chemical treatment on mechanical behavior of banana fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 5, pp. 16983–16989, 2018, doi: 10.1016/j.matpr.2018.04.102.
[16] N. Venkateshwaran, A. ElayaPerumal, and M. S. Jagatheeshwaran, “Effect of fiber length and fiber content on mechanical properties of banana fiber/epoxy composite,” Journal of Reinforced Plastics and Composites, vol. 30, no. 19, pp. 1621–1627, 2011, doi: 10.1177/0731684411426810.
[17] M. Barletta et al., “Poly (butylene succinate) (PBS): Materials, processing, and industrial applications,” Progress in Polymer Science, vol. 132, 2022, Art. no. 101579, doi: 10.1016/ j.Progpolymsci.2022.101579.
[18] E. Fortunati et al., “Processing and characterization of nanocomposite based on poly (butylene/triethyllene succinate) copolymers and cellulose nanocrystals,” Carbohydrate Polymers, vol. 165, pp. 51–60, 2017, doi: 10.1016/ j.carbpol.2017.02.024.
[19] J. Xu and B-H. Guo, “Microbial succinic acid, its polymer poly (butylene succinate), and applications,” in Plastics from Bacteria: Natural Functions and Applications, G. Q. Chen, Ed., Berlin, Germany: Springer, 2010, vol. 14, pp. 347–388, doi: 1007/978-3-642-03287-5_14
[20] D. Sheebamercy, S. G. Annapoorani, and S. M. U. Krithika,” Investigation of natural cellulosic fibers from banana for potential reinforcement in polymer composites,” Biomass Conversion and Biorefinery, vol. 15, pp. 18509–18523, 2025, doi: 10.1007/s13399-024-06398-0.
[21] K. Z. M. A. Motaleb, A. Ahad, G. Laureckiene, and R. Milasius, “Innovative banana fiber nonwoven reinforced polymer composites: Pre- and post-treatment effects on physical and mechanical properties,” Polymers, vol. 13, no. 21, 2021, Art. no. 3744, doi: 10.3390/polym 13213744.
[22] Md. Syduzzaman et al., “Tensile properties of banana fiber reinforced recycled high-density polyethylene composites: An experimental investigation,” SPE Polymers, vol. 5, no. 3, pp. 306–317, 2024, doi: 10.1002/pls2.10125.
[23] U. K. Komal, M. K. Lila, and I. Singh, “PLA/banana fiber based sustainable biocomposites: A manufacturing perspective,” Composites Part B: Engineering, vol. 180, 2020, Art. no. 107535, doi: 10.1016/j.compositesb. 2019.107535.
[24] Y.-F. Shih, and C.-C. Huang, “Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites,” Journal of Polymer Research, vol. 18, no. 6, pp. 2335–2340, 2011, doi: 10.1007/ s10965-011-9646-y.
[25] A. A. Sivakumar, C. Canales, Á. Roco-Videla, and M. Chávez, “Development of thermoplastic cassava starch composites with banana leaf fibre,” Sustainability, vol. 14, no. 19, 2022, Art. no. 12732, doi:10.3390/su141912732.
[26] Q. Tarrés et al., “The suitability of banana leaf residue as raw material for the production of high lignin content micro/nano fibers: From residue to value-added products,” Industrial Crops and Products, vol. 99, pp. 27–33, 2017, doi: 10.1016/j.indcrop.2017.01.021.
[27] T. Ferdous et al., “Pulping and bleaching potential of banana pseudo stem, banana leaf and banana peduncle,” Biomass Conversion and Biorefinery, vol. 13, no. 2, pp. 893–904, 2023, doi: 10.1007/s13399-020-01219-6.
[28] A. L. S. Pereira et al., “Banana (Musa sp. cv. Pacovan) pseudostem fibers are composed of varying lignocellulosic composition throughout the diameter,” BioResources, vol. 9, no. 4, pp. 7749–7763, 2014, doi: 10.15376/biores.9.4.7749- 7763.
[29] J. J. Kenned, K. Sankaranarayanasamy, J.S. Binoj, and S. K. Chelliah, “Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites,” Composites Science and Technology, vol. 185, 2020, Art. no. 107890, doi: 10.1016/j.compscitech.2019.107890.
[30] S. J. Schwartz and T. V. Lorenzo, “Chlorophyll stability during continuous aseptic processing and storage,” Journal of Food Science, vol. 56, no. 4, pp. 1059−1062, 1991, doi: 10.1111/j.1365-2621.1991. tb14641. x.
[31] S. Balakrishnan, G. D. Wickramasinghe, and U. S. Wijayapala, “Study on dyeing behavior of banana fiber with reactive dyes,” Journal of Engineered Fibers and Fabrics, vol. 14, 2019, Art. no. 1558925019884478, doi: 10.1177/ 1558925019884478.
[32] A. Parre, B. Karthikeyan, A. Balaji, and R. Udhayasankar, “Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber,” Materials Today: Proceedings, vol. 22, pp. 347–352, 2020, doi: 10.1016/j.matpr.2019.06.655.
[33] C. Inpakdee and N. Soodsang, “Effects of natural biological treatments on the properties of banana fiber yarn for textile,” Natural and Life Sciences Communications, vol. 23, no. 4, 2024, Art. no. e2024053, doi: 10.12982/nlsc. 2024.053.
[34] S. C. Garcea, Y. Wang, and P. J. Wither, “X-ray computed tomography of polymer composites,” Composites Science and Technology, vol. 156, pp. 305–319, 2018, doi: 10.1016/j.compscitech. 2017.10.023.
[35] X. Zhao, J. Li, S. Su, and N. Jiang, “Prediction models of mechanical properties of Jute/PLA composite based on X-ray computed tomography,” Polymers, vol. 16, no. 1, 2024, Art. no. 160, doi: 10.3390/polym16010160.
[36] S. S. Ray, “A new possibility for microstructural investigation of clay-based polymer nanocomposite by focused ion beam tomography,” Polymer, vol. 51, no. 17 pp. 3966–3970, 2010, doi: 10.1016/j.polymer.2010.06.025.
[37] S. Huang, Q. Fu, L. Yan, and B. Kasal, “Characterization of interfacial properties between fiber and polymer matrix in composite materials - A critical review,” Journal of Materials Research and Technology, vol. 13, pp. 1441–1484, 2021, doi: 10.1016/j.jmrt.2021.05.076.
[38] S. Tamayo-Vegas, A. Muhsan, C. Liu, M. Tarfaoui, and K. Lafdi, “The effect of agglomeration on the electrical and mechanical properties of polymer matrix nanocomposites reinforced with carbon nanotubes,” Polymers, vol. 14, no. 9, 2022, Art. no. 1842, doi: 10.3390/polym14091842.
[39] E. Gashawtena, A. Kidane, and B. Sirahbizu, “Comparison of the tensile strength of single natural fibers,” Cellulose, vol. 31, no. 8, pp. 4833–4848, 2024, doi: 10.1007/s10570-024-05878-w.
[40] J. M. Berrio et al., “Influence of drying temperature on the properties of Colombian banana fibers for its potential use as reinforcement in composite materials,” Scientific Reports, vol. 14, no. 1, 2024, Art. no. 25180, doi: 10.1038/s41598-024-76460-4.
[41] C. Twebaze et al., “Banana fiber degumming by alkali treatment and ultrasonic methods,” Journal of Natural Fibers, vol. 19, no. 16, pp. 12911–12923, 2022, doi: 10.1080/15440478. 2022.2079581.
[42] X-X, Zhou and Q. Dou, “Preparation of poly (butylene succinate)/soy protein isolate bio‑Composites by reactive compatibilization with peroxide and acrylate,” Journal of Polymers and the Environment, vol. 30, no. 5, pp. 1847–1863, 2022, doi: 10.1007/s10924-021-02321-0.
[43] D. Kusic, U. Božic, M. Monzón, R. Paz, and P. Bordón, “Thermal and mechanical characterization of banana fiber reinforced composites for its application in injection molding,” Materials, vol. 13, no. 16, 2020, Art. no. 3581, doi: 10.3390/ ma13163581.
[44] A. A. Shamsuri, K. Abdan, and S. N. A. Jamil, “Polybutylene succinate (PBS)/natural fiber green composites: melt blending processes and tensile properties,” Physical Sciences Reviews, vol. 8, no. 12, pp. 5121–5133, 2023, doi: 10.1515/psr-2022-0072.
[45] R. Jumaidin, N. A. Diah, R. A. Ilyas, R. H. Alamjuri, and F. A. M. Yusof, “Processing and characterisation of banana leaf fibre reinforced thermoplastic cassava starch composites,” Polymers, vol. 13, no. 9, 2021, Art. no. 1420, doi: 10.3390/polym13091420.
[46] V. S. Gandhi, N. Sreeraman, I. Jenish, and R. Kumaravelan, “Investigating tensile, flexural, impact, and morphological characteristics of agro-waste-based cissus quadrangularis fiber/ banana fiber reinforced polymer composites,” Mechanics of Composite Materials, vol. 60, no. 6, pp. 1059–1070, 2025, doi: 10.1007/s11029-025-10245-2.
[47] F. Basiji, F. Erchiqui, A. Koubaa, I. Ghasemi, and A. Baatti, “Impact of fiber morphology and content on the thermal stability, and mechanical performance of Maple wood fiber-polypropylene composites,” Journal of Applied Polymer Science, vol. 142, no. 30, 2025, Art. no. e57211, doi: 10.1002/app.57211.
[48] S. Mukhopadhyay, R. Fangueiro, Y. Arpaç, and Ü. Şentürk, “Banana fibers – variability and fracture behaviour,” Journal of Engineered Fibers and Fabrics, vol. 3, no. 2, 2008, Art. no. 155892500800300207, doi: 10.1177/155892500 800300207.
[49] C. H. Lee, A. Khalina, and S. H. Lee, “Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: A review,” Polymers, vol. 13, no. 3, 2021, Art. no. 438, doi: 10.3390/ polym13030438.
[50] A. Ramachandran et al., “Modification of fibers and matrices in natural fiber reinforced polymer composites: A comprehensive review,” Macromolecular Rapid Communications, vol. 43, no. 17, 2022, Art. no. 2100862, doi: 10.1002/marc.202100862.
[51] M. Ramesh, L. N. Rajeshkumar, N. Srinivasan, D. V. Kumar, and D. Balaji, “Influence of filler material on properties of fiber reinforced polymer composites: A review,” e-Polymers, vol. 22, no. 1, pp. 898–916, 2022, doi: 10.1515/epoly-2022-0080.
[52] O. Olanrewaju, I. O. Oladele, and S. O. Adelani, “Recent advances in natural fiber reinforced metal/ceramic/polymer composites: An overview of the structure-property relationship for engineering applications,” Hybrid Advances, vol. 8, 2025, Art. no. 100378, doi: 10.1016/ j.hybadv.2025.100378.
[53] V. Ganesan et al., “Experimental analysis of mechanical properties of banana fibre/eggshell powder-reinforced hybrid epoxy composite,” Engineering Proceedings, vol. 61, no.1, 2024, Art. no. 18, doi: 10.3390/engproc2024061018.
[54] K. Shahapurkar et al., “An experimental study on the hardness, inter laminar shear strength, and water absorption behavior of habeshian banana fiber reinforced composites,” Journal of Natural Fibers, vol. 21, no. 1, 2024, Art. no. 2338930, doi: 10.1080/15440478.2024.2338930.
DOI: 10.14416/j.asep.2026.01.001
Refbacks
- There are currently no refbacks.
Applied Science and Engineering Progress







