Page Header

การนำไปใช้ทางชีวภาพของสาหร่ายพวงองุ่นในทางเดินอาหารจำลองของมนุษย์
Bioaccessibility of Sea Grape (Caulerpa lentillifera) in Simulated Human Digestive System in vitro digestion model

Numphon Thaiwong, Natta Kachenpukdee, Dararat Buaphet

Abstract


การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อประเมินการนำไปใช้ทางชีวภาพของสาหร่ายพวงองุ่นในแบบจำลองกระบวนการย่อยในทางเดินอาหารของมนุษย์ แบบจำลองระบบทางเดินอาหารในหลอดทดลองเป็นการทดสอบเสถียรภาพของสารประกอบฟีนอลทั้งหมดและสารต้านออกซิเดชันในสาหร่ายพวงองุ่นเมื่อผ่านกระบวนย่อย โดยศึกษาองค์ประกอบทางเคมี ปริมาณฟีนอลทั้งหมด ฤทธิ์การต้านออกซิเดชันของสาหร่ายพวงองุ่นสดและแห้ง และศึกษาการนำไปใช้ทางชีวภาพในสาหร่ายพวงองุ่นสดจากปริมาณฟีนอลทั้งหมด และฤทธิ์การต้านออกซิเดชัน ผลการทดลองพบว่า สาหร่ายพวงองุ่นสดมีปริมาณความชื้น โปรตีน ไขมัน เถ้า เท่ากับ 82.63%, 3.89%, 1.27% และ 12.21% ตามลำดับ และสาหร่ายพวงองุ่นอบแห้งมีค่าเท่ากับ 2.29%, 19.76%, 0.63% และ 31.48% ตามลำดับ ปริมาณสารประกอบฟีนอลทั้งหมดของสาหร่ายสดและสาหร่ายที่ผ่านการอบแห้ง มีค่าเท่ากับ 38.10 ± 3.00 mg GAE/g sample และ 3.50 ± 0.51 mg GAE/g sample ตามลำดับ เมื่อวิเคราะห์ฤทธิ์การต้านออกซิเดชันของสาหร่ายพวงองุ่นสดโดยวิธี DPPH และ ABTS เท่ากับ 5.90 ± 0.82% และ 13.82 ± 0.22% ตามลำดับ ขณะที่สาหร่ายพวงองุ่นแห้งมีค่าเท่ากับ 1.93 ± 0.31% และ 2.11 ± 0.13% ตามลำดับ การประเมินการนำไปใช้ทางชีวภาพของสาหร่ายพวงองุ่นสดในทางเดินอาหารจำลองของมนุษย์ แสดงให้เห็นว่า เสถียรภาพของสารประกอบฟีนอลทั้งหมดและฤทธิ์การต้านออกซิเดชันมีค่าลดลงอย่างมีนัยสำคัญทางสถิติ (p < 0.05) เมื่อปริมาณตัวอย่างเพิ่มขึ้นในระดับ 2 – 8 กรัม

The objective of this study was to determine the bioaccessibility of C. lentillifera (sea grapes) in vitro digestion model. In vitro simulated digestion model was examined for the stability of total phenolic contents and antioxidant activity after C. lentillifera digestion. The proximate analysis, total phenolic content and antioxidant activity of fresh- and dried sea grapes were considered in this study. The bioaccessibility of fresh sea grapes was evaluated from total phenolic content and antioxidant activities. The results showed that the moisture, crude protein, fat and ash were about 82.63, 3.89, 1.27 and 12.21%, respectively. The dried sea grape was reported by 2.29% of moisture, 19.76% of crude protein, 0.63% of fat, and 31.48% of ash. The total phenolic contents of fresh and dried sea grapes were indicated about 38.10 ± 3.00 mg GAE/g sample and 3.50 ± 0.51 mg GAE/g sample, respectively. The antioxidant activity of fresh sea grapes was about 5.90 ± 0.82% by DPPH method and 13.82 ± 0.22% of ABTS method. The antioxidant values by DPPH and ABTS methods were shown at 1.93 ± 0.31% and 2.11 ± 0.13%, respectively. The evaluation of bioaccessibility of C. lentillifera in Simulated Human Digestive System in vitro digestion model revealed that the stability of total phenolic contents and antioxidant activities decreased significantly (p < 0.05) in relation to the increase of C. lentillifera contents in the range of 2–8 g.


Keywords



[1] S. U. Kadam, B. K. Tiwari, and C. P. O’Donnell, “Application of novel extraction technologies for bioactives from marine algae,” Journal of Agricultural and Food Chemistry, vol. 61, pp. 4667–4675, 2013.

[2] X. Chen, Y. Sun, H. Liu, S. Liu, Y. Qin, and P. Li. (2019). Advances in cultivation, wastewater treatment application, bioactive components of Caulerpa lentillifera and their biotechnological applications. PeerJ. 7:e6118, 2019. [Online]. Available: http://doi.org/10.7717/peerj.6118.

[3] R. Syamsuddin, H. Y. Azis, Badraeni, and Rustam, “Comparative study on the growth, carotenoid, fibre and mineral content of the seaweed Caulerpa lentillifera cultivated indoors and in the sea,” in Proceedings Syamsuddin 2019 Comparative SO, 2019.

[4] N. A. Paul, N. Neveux, M. Magnusson, and R. de Nys, “Comparative production and nutritional value of “sea grapes” — the tropical green seaweeds Caulerpa lentillifera and C. racemose,” Journal of Applied Phycology, vol. 26, pp. 1833– 1844, 2014.

[5] M. Hayes and D. Flower, “Bioactive peptides from marine processing byproducts” in Bioactive Compounds from Marine Foods: Plant and Animal Sources, B. Hernandez- Ledesma and M. Herrero, Eds., UK: John Wiley & Sons, 2014, pp. 57-71.

[6] M. Blasa, L. Gennari, D. Angelino, and P. Ninfali, “Fruit and vegetable antioxidants in health,” in Bioactive Foods in Promoting Health: Fruits and Vegetables, R. R. Watson and V. R. Preedy, San Diego, CA: Academic Press, 2010, pp. 37–58.

[7] K. Wojtunik-Kulesza, A. Oniszczuk, T. Oniszczuk, M. Combrzynski, D. Nowakowska, and A. Matwijczuk, “Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A nonsystematic review,” Nutrients, vol. 12, no. 5, pp. 1401, 2020.

[8] G. M. Bornhorst, O. Gouseti, M. S. J. Wickham, and S. Bakalis, “Engineering digestion: Multiscale processes of food digestion,” Journal of Food Science, vol. 81, no. 3, pp. R534–R543, 2016.

[9] C. Paliwal, T. Ghosh, K. Bhayani, R. Maurya, and S. Mishra, “Antioxidant, anti-nephrolithe activities and in vitro digestibility studies of three different cyanobacterial pigment extracts,” Mar Drugs., vol. 13, no. 8, pp. 5384–5401, 2015.

[10] G. Corona, M. M. Coman, Y. Guo, S. Hotchkiss, C. Gill, P. Yaqoob, J. P. E. Spencer, and I. Rowland, “Effect of simulated gastrointestinal digestion and fermentation on polyphenolic content and bioactivity of brown seaweed phlorotanninrich extracts,” Molecular Nutrition & Food Research, vol. 61, no. 11, 2017.

[11] A. Galland-Irmouli, J. Fleurence, R. Lamghari, M. Lucon, C. Rouxel, O. Barbaroux, J. Bronowicki, C. Villaume, and J. Gueant, “Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse),” Journal of Nutritional Biochemistry, vol. 10, pp. 353–359, 1999.

[12] R. E. Cian, M. A. Fajardo, M. Alaiz, J. Vioque, R. J. Gonzalez, and S. R. Drago, “Chemical composition, and antioxidant properties of the red edible seaweed Porphyra columbina,” International Journal of Food Sciences and Nutrition, vol. 65, no. 3, pp. 299–305, 2014.

[13] S. Vladimir-Kneževic, B. Blažekovi´c, M. Bival Štefan, and M. Babac, “Plant polyphenols as antioxidants influencing the human health,” in Phytochemicals as Nutraceuticals—Global Approaches to Their Role in Nutrition and Health, UK: In Tech: London, 2012, pp. 155–177.

[14] P. Košinová, F. Di Meo, E. H. Anouar, J. L. Auroux, and P. Trouillas, “H-atom acceptor capacity of free radicals used in antioxidant measurements,” International Journal of Quantum Chemistry, vol. 111, pp. 1131–1142, 2011.

[15] S. Bleakey and M. Hayes, “Algal proteins: Extraction, application, and challenges concerning production,” Foods, vol. 6, no. 33, 2017.

[16] P. A. Tenorio-Rodriguez, J. I. Murillo-A´ lvarez, A. I. Campa-Cordova, and C. Angulo, “Antioxidant screening and phenolic content of ethanol extracts of selected Baja California Peninsula macroalgae,” Journal of Food Science and Technology, vol. 54, no. 2, pp. 422–429, 2017.

[17] R. Re, N. Pellegrini, A. Proteggente, A. Y. M. Pannala, and C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorizing assay,” Free Radical Biology and Medicine, vol. 26, no. 9–10, pp. 1231–1237, 1999.

[18] M. G. Ferruzzi, M. L. Failla, and S. J. Schwartz, “Assessment of degradation and intestinal cell uptake of carotenoids and chlorophylls derivatives from Spinach Puree using an in vitro digestion and Caco-2 human intestinal cells model,” Journal of Agricultural and Food Chemistry, vol. 49, no. 4, pp. 2082–2089, 2001.

[19] M. Miranda, A. Vega-Gálvez, J. López, G. Parada, M. Sanders, M. Aranda, E. Uribe, and K. D. Scala, “Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.),” Industrial Crops and Products, vol. 32, no. 3 pp. 258–263, 2010.

[20] R. Nofiani, S. Hertanto, T. A. Zaharah, and S. Gafur, “Proximate compositions and biological activities of caulerpa lentillifera,” Molekul, vol. 13, no. 2, pp. 141–147, 2018.

[21] E. Sinurat and S. Fadjriah, “The chemical properties of seaweed Caulerpa lentifera from Takalar, South Sulawesi,” IOP Conference Series Materials Science and Engineering, vol. 546, 2019.

[22] S. Rameshkumar, C. M. Ramakritinan, and M. Yokeshbabu, “Proximate composition of some selected seaweeds from Palk bay and Gulf of Mannar, Tamilnadu India,” Asian Journal of Biomedical and Pharmaceutical Sciences, vol. 3, no. 16, pp. 1–5, 2012.

[23] K. Manivannan, G. Thirumaran, G. Karthikai Devi, P. Anantharaman, and T. Balasubramanian, “Proximate composition of different group of seaweeds from vedalai coastal waters (Gulf of Mannar): Southeast Coast of India,” Middle East Journal of Scientific Research, vol. 4, no. 2, pp. 72–77, 2009.

[24] S. Lapnitiporn, N. Laohakunjit, and O. Kerdchoechuen, “Physico-Chemical composition and antioxidant activity of cashew apple juice,” Journal of Agricultural Science, vol. 43, no. 2 (Suppl.), pp. 409–412, 2012.

[25] M. Stramarkou, S. Papadaki, K. Kyriakopoulou, and M. Krokida, “Effect of drying and extraction conditions on the recovery of bioactive compounds from Chlorella vulgaris,” Journal of Applied Phycology, vol. 29, no. 6, pp. 2947–2960, 2017.

[26] T. M. Rababah, M. Al-u’datt, M. Alhamad, M. Al-Mahasneh, K. Ereifej, J. Andrade, B. Altarifi, A. Almajwal, and W. Yang, “Effects of drying process on total phenolics, antioxidant activity and flavonoid contents of common Mediterranean herbs,” International Journal of Agricultural and Biological Engineering, vol. 8, no. 2, pp. 145– 150, 2015.

[27] V. T. Nguyen, J. Ueng, and G. Tsai, “Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera),” Journal of Food Science, vol. 76, no. 7, pp. C950–C958, 2011.

[28] R. Sirbu, T. Negreanu-Pirjol, M. Mirea, and B. S. Negreanu-Pirjol, “Bioactive compounds from three green algae species along Romanian black sea coast with therapeutically properties,” European Journal of Medicine and Natural Sciences, vol. 3, no. 1, pp. 5–15, 2019.

[29] A. C. Guedes, H. M. Amaro, I. Sousa-Pinto, and F. X. Malcata, “Algal spent biomass—A pool of applications” in Biofuels from Algae, A. Pandey, J. Chang, C. R. Soccol, D. Lee, and Y. Chisti, Eds., UK: Elsevier, 2019, pp. 397–433.

[30] K. J. Lee, Y. C. Oh, W. K. Cho, and J. Y. Ma, “Antioxidant and anti-inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening HPLC assay,” Evidence-Based Complementary and Alternative Medicine, vol. 2015, 2015.

[31] P. Wisespongpand, P. Jitmitrsumphan, C. Kaewsuralikhit, and A. Kanthawong, “Antioxidant activities of extracts from seaweed,” in Proceedings 51st Kasetsart University Annual Conference: Veterinary Medicine, Fisheries, Bangkok, Thailand, 5–7 Feb. 2013, pp. 414– 421.

[32] L. Kang, Y. Huang, W. Lim, P. Hsu, and P. Hwang, “Growth, pigment content, antioxidant activity, and phytoene desaturase gene expression in Caulerpa lentillifera grown under different combinations of blue and red light-emitting diodes,” Journal of Applied Phycology, vol. 32, pp. 1971–1982, 2020.

[33] O. Merhan. (2017). The Biochemistry and Antioxidant Properties of Carotenoids. [Online]. Available: Available: https://www.intechopen. com/books/carotenoids/the-biochemistryand- antioxidant-properties-of-carotenoids.

[34] P. T. Chan, P. Matanjun, S. M. Yasir, and T. S. Tan, “Antioxidant activities and polyphenolics of various solvent extracts of red seaweed, Gracilaria changii,” Journal of Applied Phycology, vol. 27, pp. 2377–2386, 2015.

[35] T. Z. B. Sheikh, C. L. Yong, and M. S. Lian, “In vitro antioxidant activity of the hexane and methanolic extracts of Sargassum baccularia and Cladophora Patentiramea,” Journal of Applied Phycology, vol. 9, no. 13, pp. 2490– 2493, 2009.

[36] F. Firdiyanti, T. W. Agustini, and W. F. Ma’ruf, “Extraction of bioactive compounds as natural antioxidants from fresh Spirulina platensis using different solvents,” Jurnal Pengolahan Hasil Perikanan Indonesia, vol. 18, no. 1, pp. 28–37, 2015.

[37] L. Tesoriere, M. Fazzari, F. Angileri, C. Gentile, and M. A. Livrea, “In vitro digestion of betalainic foods. Stability and bioaccessibility of betaxanthins and betacyanins and antioxidative potential of food digesta,” Journal of Agricultural and Food Chemistry, vol. 56, no. 22, pp. 10487–10492, 2008.

[38] P. R. Kiela and F. K. Ghishan, “Physiology of intestinal absorption and secretion,” Best Practice & Research. Clinical gastroenterology, vol. 30, no. 2, pp. 145–159, 2016.

[39] S. Wakim and M. Grewal. (2020, December) Human Biology. [Online]. Available: https://bio. libretexts.org/Bookshelves/Human_Biology/ Book%3A_Human_Biology_(Wakim_and_Grewal)

[40] M. S. Swallah, H. Fu, H. Sun, R. Affoh, and H. Yu, “The impact of polyphenol on general nutrient metabolism in the monogastric gastrointestinal tract,” Journal of Food Quality, vol. 2020, pp. 1–12, 2020.

[41] L. Machu, L. Misurcova, J. V. Ambrozova, J. Orsavova, J. Mlcek, J. Sochor, and T. Jurikova, “Phenolic content and antioxidant capacity in algal food products,” Molecules, vol. 20, pp. 1118–1133, 2015.

[42] I. Viera, A. Pérez-Gálvez, and M. Roca, “Bioaccessibility of marine carotenoids,” Marine Drugs, vol. 16, 397, 2018. [Online]. Available: http://doi/10.3390/md16100397.

Full Text: PDF

DOI: 10.14416/j.kmutnb.2022.04.006

ISSN: 2985-2145