Page Header Logo Applied Science and Engineering Progress

Pectin-Aloe vera Gel Biopolymer Transdermal Patches for Prospective Limonene Delivery System: Characterization and in vitro Release Kinetics

Nisaul Fadilah Dalimunthe, Michael Michael, Thiodorus Marvin Tjandra, Iryuni Madinar Pulungan, Muhammad Thoriq Al Fath, Rivaldi Sidabutar, Jeslyn Harsono, Pema Yangden, Sang Kompiang Wirawan

Abstract


Pectin-based transdermal systems suffer from inadequate mechanical properties and rapid biodegradation, limiting pharmaceutical applications. This study addresses these critical limitations through novel transdermal patches fabricated with varied pectin concentrations (7–11g) and Aloe vera (AV) gel extract (0–10% w/w) as a bioactive matrix for Citrus aurantifolia-derived limonene delivery. Patches were fabricated via solvent casting using pectin and AV gel, followed by characterization of physicochemical properties (swelling, moisture content, and biodegradation), surface morphology (SEM), and molecular interactions (FTIR). Mechanical properties were assessed by tensile testing and in vitro release studies were performed using a Franz diffusion cell with benzoylated dialysis membrane to evaluate release kinetics. Optimal formulations demonstrated a remarkable 7.39-fold tensile strength enhancement (6.070 ± 0.008 MPa), superior in vitro release kinetics, with 57.85 ± 0.60% initial burst release, and 94.61 ± 0.30% sustained delivery over 120 h. Korsmeyer-Peppas kinetics (n = 0.472) confirmed non-Fickian diffusion mechanisms. Economic viability was established (production cost: 2.5 USD/L; net profit: 2.8 USD/L), presenting a commercially feasible and biodegradable solution for pharmaceutical applications. Future investigations will focus on in vivo evaluation to confirm the efficacy, safety, and clinical applicability of the developed patches.

Keywords



[1]    H. Qin et al., “Advances of transdermal drug delivery system based on extracellular vesicles,” Journal of Drug Delivery Science and Technology, vol. 105, 2025, doi: 10.1016/j.jddst. 2025.106647.

[2]    M. S. Huang, P. Chanapongpisa, P. Yasurin, K. Kitsubthawee, J. Phetsom, and Ir. Lindayani, “Centella asiatica extract loaded BSA nanoparticles using the organic and conventional C. asiatica to improve bioavailability activity and drug delivery system,” Applied Science and Engineering Progress, vol. 13, no. 1, pp. 11–18, 2020, doi: 10.14416/j.asep.2020.01.001.

[3]    R. Chakraborty, N. Afrose, and K. Kuotsu, “Novel synergistic approaches of protein delivery through physical enhancement for transdermal microneedle drug delivery: A review,” Journal of Drug Delivery Science and Technology, vol. 84, 2023, doi: 10.1016/j.jddst.2023.104467.

[4]    W. Y. Jeong, M. Kwon, H. E. Choi, and K. S. Kim, “Recent advances in transdermal drug delivery systems: A review,” Biomaterials Research, vol. 25, p. 24, 2021, doi: 10.1186/ s40824-021-00226-6.

[5]    T. Karve, A. Dandekar, V. Agrahari, M. M. Peet, A. K. Banga, and G. F. Doncel, “Long-acting transdermal drug delivery formulations: Current developments and innovative pharmaceutical approaches,” Advanced Drug Delivery Reviews, vol. 210, 2024, doi: 10.1016/j.addr.2024.115326.

[6]    M. S. Amiri, V. Mohammadzadeh, M. E. T. Yazdi, M. Barani, A. Rahdar, and G. Z. Kyzas, “Plant-based gums and mucilages applications in pharmacology and nanomedicine: A review,” Molecules, vol. 26, pp. 1770, doi: 10.3390/ molecules26061770.

[7]    Z. Karim, P. Karwa, and S. R. R. Hiremath, “Polymeric microneedles for transdermal drug delivery- a review of recent studies,” Journal of Drug Delivery Science and Technology, vol. 77, 2022, doi: 10.1016/j.jddst.2022.103760.

[8]    T. Suwandecha and P. Changklang, “Formulation development and characterization of a transdermal patch containing Crinum asiaticum leaves extract,” Journal of Applied Pharmaceutical Science, vol. 13, pp. 207–213, 2023, doi: 10.7324/JAPS.2023. 151643.

[9]    N. F. Dalimunthe, S. K. Wirawan, M. Michael, T. M. Tjandra, M. T. Al Fath, and R. Sidabutar, “Pectin-carbonate hydroxyapatite composite films as a potential drug delivery system for cinnamaldehyde: Characterization and release kinetics modeling,” Case Studies in Chemical and Environmental Engineering, vol. 10, p. 100905, 2024, doi: 10.1016/j.cscee.2024.100905.

[10] W. M. Kedir, E. M. Deresa, and T. F. Diriba, “Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites,” Heliyon, vol. 8, 2022, doi: 10.1016/j.heliyon. 2022.e10654.

[11] Z. Jader, F. T. Yazdi, S. A. Mortazavi, and A. Kocheki, “Effects of glycerol and sorbitol on a novel biodegradable edible film based on Molva sylvestris flower gum,” Food Science and Nutrition, vol. 11, pp. 991–1000, 2023, doi: 10.1002/fsn3.3134.

[12] I. Backsay et al., “Formulation and evaluation of transdermal patches containing BGP-15,” Pharmaceutics, vol. 16, p. 36, 2024, doi: 10.3390/pharmaceutics16010036.

[13] W. A. Asfaw, K. D. Tafa, and N. Satheesh, “Optimization of citron peel pectin and glycerol concentration in the production of edible film using response surface methodology,” Heliyon, vol. 9, 2023, doi: 10.1016/j.heliyon.2023.e13724.

[14] T. Nisar et al., “Citrus pectin films enriched with thinned young apple polyphenols for potential use as bio-based active packaging,” CyTA – Journal of Food, vol. 17, pp. 695–705, 2019, doi: 10.1080/19476337.2019.1640798.

[15] S. Andini, E. Rustiani, and U. Lathifah, “Formulation and In-vitro penetration test of ketoprofen patch with addition aloe vera powder (Aloe vera L.) bioenhancer,” Fitofarmaka, vol. 14, pp. 51–58, 2024, doi: 10.33751/jf.v14i1.9874.

[16] R. A. Jiménez, D. Millán, A. Sosnik, and M. R. Fontanilla, “Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance,” Materials Today Chemistry, vol. 23, 2022, doi: 10.1016/ j.mtchem.2021.100722.

[17] M. A. Bhutkar, S. D. Bhinge, D. S. Randive, O. Nayakal, and P. Patil, “Evaluation of dimethylsulfoxide and Aloe vera as penetration enhancers for cutaneous application of lidocaine,” Ars Pharmaceutica, vol. 60, pp. 85–92, 2019, doi: 10.30827/ars.v60i2.8084.

[18] J. Sainy, U. Atneriya, J. L. Kori, and R. Maheshwari, “Development of an aloe vera-based emulgel for the topical delivery of desoximetasone,” Turkish Journal of Pharmaceutical Sciences, vol. 18, pp. 465–475, 2021, doi: 10.4274/tjps.galenos.2020.33239.

[19] N. A. Charoo, A. A. A. Shamsher, K. Kohli, K. Pillai, and Z. Rahman, “Improvement in bioavailability of transdermally applied flurbiprofen using tulsi (Ocimum sanctum) and turpentine oil,” Colloids and Surfaces B: Biointerfaces, vol. 65, pp. 300–307, 2008, doi: 10.1016/j.colsurfb. 2008.05.001.

[20] X. F. Chen et al., “The pharmacological effects and potential applications of limonene from citrus plants: A review,” Natural Product Communications, vol. 19, 2024, doi: 10.1177/ 1934578X241254229.

[21] A. A. Maan, Z. F. R. Ahmed, M. K. I. Khan, A. Riaz, and A. Nazir, “Aloe vera gel, an excellent base material for edible films and coatings,” Trends in Food Science and Technology, vol. 116, pp. 329–341, 2021, doi: 10.1016/j.tifs. 2021.07.035.

[22] D. N. Iqbal et al., “Polymeric membranes of chitosan/aloe vera gel fabrication with enhanced swelling and antimicrobial properties for biomedical applications,” Dose-Response, vol. 21, 2023, doi: 10.1177/15593258231169387.

[23] M. T. A. Fath et al., “Bio-sourced black Soldier Fly (Hermetia illucens) maggot chitosan/PVA/ PAN-based polymer electrolyte membrane for sustainable energy storage applications,” Applied Science and Engineering Progress, vol. 18, no. 1, 2025, Art. no. 7485, doi: 10.14416/j.asep.2024. 07.002.

[24] ASTM International, “ASTM D570-98: Standard Test Method for Water Absorption of Plastics,” ASTM International, West Conshohocken, PA, 1998.

[25] M. Q. Bedregal, E. M. de Jara, H. P. Cordero, and L. M. Zanardi, “Development and characterization of novel packaging films from composite mixtures of rice-starch, tara gum and pectin,” International Journal of Food Science & Technology, vol. 60, no. 3, pp. 1153–1162, Jan. 2023, doi: 10.1007/s13197-023-05669-4.

[26] H. Jodati, Z. Evis, A. Tezcaner, A. Z. Alshemary, and A. Motamen, “3D porous bioceramic based boron-doped hydroxyapatite/baghdadite composite scaffolds for bone tissue engineering,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 140, p. 105722, 2023, doi: 10.1016/j.jmbbm. 2023.105722.

[27] Z. Terzopoulou, A. Michopoulou, A. P. E. Koliakou, and D. Bikiaris, “Preparation and evaluation of collagen-based patches as curcumin carriers,” Polymers, vol. 12, p. 2393, 2020, doi: 10.3390/polym12102393.

[28] F. Convertino et al., “The fate of post-use biodegradable PBAT-based mulch films buried in agricultural soil,” Science of The Total Environment, vol. 948, p. 174697, 2024, doi: 10.1016/j.scitotenv.2024.174697.

[29]  O. García-Depraect et al., “Biodegradation of bioplastics under aerobic and anaerobic aqueous conditions: Kinetics, carbon fate and particle size effect,” Bioresource Technology, vol. 344, pp. 126265, 2022, doi: 10.1016/j.biortech.2021.126265.

[30] ASTM International, “ASTM D882-10: Standard Test Method for Tensile Properties of Thin Plastic Sheeting,” ASTM International, West Conshohocken, PA, 2010.

[31] S. Carrasco, L. González, M. Tapia, B. F. Urbano, C. Aguayo, and K. Fernández, “Enhancing alginate hydrogels as possible wound-healing patches: The synergistic impact of reduced graphene oxide and tannins on mechanical and adhesive properties,” Polymers, vol. 16, p. 1081, 2024, doi: 10.3390/polym 16081081.

[32] A. K. Kodoth, V. M. Ghate, S. A. Lewis, B. Prakash, and V. Badalamoole, “Pectin-based silver nanocomposite film for transdermal delivery of Donepezil,” International Journal of Biological Macromolecules, vol. 134, pp. 269–279, 2019, doi: 10.1016/j.ijbiomac.2019.04.191.

[33] Q. Liu et al., “A high-performance watermelon skin ion-solvating membrane for electrochemical CO2 reduction,” Nature Communications, vol. 15, p. 6722, 2024, doi: 10.1038/s41467-024-51139-6.

[34] M. Chelu et al., “High-content aloe vera based hydrogels: Physicochemical and pharmaceutical properties,” Polymers, vol. 15, p. 1312, 2023, doi: 10.3390/polym15051312.

[35] D. Boanares, B. G. Ferreira, A. R. Kozovits, H. C. Sousa, R. M. S. Isaias, and M. G. C. França, “Pectin and cellulose cell wall composition enables different strategies to leaf water uptake in plants from tropical fog mountain,” Plant Physiology and Biochemistry, vol. 122, pp. 57–64, 2018, doi: 10.1016/j.plaphy.2017.11.005.

[36] T. Y. D. Trang, H. T. Dzung, T. T. Huong, L. Q. Dien, D. T. Hanh, and H. T. N. Phuong, “Preparation and characterization of chitosan/ aloe vera gel film for fresh fruit preservation,” E3S Web of Conferences, vol. 443, p. 02003, 2023, doi: 10.1051/e3sconf/202344302003.

[37] A. Mahmood et al., “Sustained drug delivery, development, characterization, and in vitro evaluation,” Gels, vol. 9, p. 474, 2023, doi: 10.3390/gels9060474.

[38] R. A. Sultan, A. N. F. Rahman, A. Dirpan, and A. Syarifuddin, “Physical, mechanical, barrier, antibacterial properties, and functional group of carrageenan-based edible film as influenced by pectin from Dillenia serrata fruit peel and curcumin,” Current Research in Nutrition and Food Science Journal, vol. 11, pp. 1308–1321, 2023, doi: 10.12944/CRNFSJ.11.3.32.

[39] A. Hadi, A. Nawab, F. Alam, and K. Zehra, “Alginate/aloe vera films reinforced with tragacanth gum,” Food Chemistry: Molecular Sciences, vol. 4, 2022, doi: 10.1016/j.fochms. 2022.100105.

[40] Z. U. Arif, “The role of polysaccharide-based biodegradable soft polymers in the healthcare sector,” Advances in Industrial and Engineering Polymer Research, 2024, doi: 10.1016/j.aiepr. 2024.05.001.

[41] S. Al-Hajri, B. M. Negash, M. M. Rahman, M. Haroun, and T. M. Al-Shami, “Perspective review of polymers as additives in water-based fracturing fluids,” ACS Omega, vol. 7, pp. 7431–7443, 2022, doi: 10.1021/acsomega.1c06739.

[42] M. A. R. Dayan, M. M. Habib, M. M. Uddin, M. Khatun, M. S. Hossain, and M. A. Rashid, “Characterization of aloe vera gel incorporated unsaturated polyester resin jute-cotton fabric composites for enhanced biodegradability, flexibility, and insulation properties,” Heliyon, vol. 10, 2024, doi: 10.1016/j.heliyon.2024.e35261.

[43] A. Izadi, H. Rashedi, R. Ghafarzadegan, and R. Hajiaghaee, “Evaluation the effect of enzymatic process on the edible aloe vera gel viscosity using commercial cellulase,” Journal of Applied Biotechnology Reports, vol. 2, pp. 299–303, 2015.

[44] M. H. Rashid, S. I. Sujoy, M. S. Rahman, and M. J. Haque, “Aloe vera assisted green synthesis of Ag and Cu co-doped ZnO nanoparticles and a comprehensive analysis of their structural, morphological, optical, electrical and antibacterial properties,” Heliyon, vol. 10, 2024, doi: 10.1016/ j.heliyon.2024.e25438.

[45] T. Begum et al., “Aloe vera gel mediated green synthesis of ruthenium nanoparticles and their potential anticancer activity,” Next Nanotechnology, vol. 7, 2025, doi: 10.1016/j.nxnano.2024.100095.

[46] S. Mohanasundaram et al., “Extraction of pectin from Ethiopian prickly pear fruit peel and its potency for preparing of cellulose-reinforced biofilm,” Biomass Conversion and Biorefinery, vol. 14, pp. 32133–32147, 2024, doi: 10.1007/ s13399-023-04996-y.

[47] V. F. Ursachi, M. Oroian, and M. Spinei, “Development and characterization of biodegradable films based on cellulose derivatives and citrus pecting: A comparative study,” Industrial Crops and Products, vol. 219, 2024, doi: 10.1016/ j.indcrop.2024.119052.

[48] D. Bajer, K. Janczak, and K. Bajer, “Novel starch/chitosan/aloe vera composites as promising biopackaging materials,” Journal of Polymers and the Environment, vol. 28, pp. 1021–1039, 2020, doi: 10.1007/s10924-020-01661-7.

[49] S. Chismirina et al., “Study of formulation and FTIR analysis of aloe vera gel for periodontal disease therapy,” Journal of Community and Preventive Dentistry, vol. 2, pp. 7–13, 2024.

[50] H. Alipanah, M. Farjam, E. Zarenezhad, G. Roozitalab, and M. Osanloo, “Chitosan nanoparticles containing limonene and limonene-rich essential oils: Potential phytotherapy agents for the treatment of melanoma and breast cancers,” BMC Complementary Medicine and Therapies, vol. 21, p. 186, 2021, doi: 10.1186/ s12906-021-03362-7.

[51] Nagase ChemteX, “Characteristics of Polyurethane (elongation, strength, shock absorption) and comparison with other materials,” 2025.

[52] P. Mohite et al., “Polymeric hydrogel sponges for wound healing applications: A comprehensive review,” Regenerative Engineering and Translational Medicine, vol. 10, pp. 416–437, 2024, doi: 10.1007/s40883-024-00334-4.

[53] Y. C. Ching, A. Rahman, K. Y. Ching, N. L. Sukiman, and C. H. Chuah, “Preparation and characterization of polyvinyl alcohol-based composite reinforced with nanocellulose and nanosilica,” BioResources, vol. 10, pp. 3364–3377, 2015, doi: 10.15376/biores.10.2.3364-3377.

[54] K. A. Jodhani and M. Nataraj, “Synergistic effect of Aloe gel (Aloe vera L.) and Lemon (Citrus Limon L.) peel extract edible coating on shelf life and quality of banana (Musa spp.),” Journal of Food Measurement and Characterization, vol. 15, pp. 2318–2328, 2021, doi: 10.1007/s11694-021-00822-z.

[55] E. G. Bacha, H. D. Demsash, L. D. Shumi, and B. E. Debesa, “Investigation on reinforcement effects of nanocellulose on the mechanical properties, water absorption capacity, biodegradability, optical properties, and thermal stability of a polyvinyl alcohol nanocomposite film,” Advances in Polymer Technology, vol. 2022, 2022, doi: 10.1155/2022/6947591.

[56] B. V. Rooyen, M. D. Wit, G. Osthoff, J. V. Niekerk, and A. Hugo, “Effect of pH on the mechanical properties of single-biopolymer mucilage (Opuntia ficus-indica), pectin and alginate films: Development and mechanical characterisation,” Polymers, vol. 15, p. 4640, 2023, doi: 10.3390/polym15244640.

[57] R. K. Deshmukh, P. Kumar, R. Tanwar, and K. K. Gaikwad, “Pectin polyvinylpyrrolidone based antimicrobial and antioxidant nanocomposite film impregnated with titania nanoparticles and bael shell extract,” Food and Bioprocess Technology, vol. 15, pp. 2839–2853, 2022, doi: 10.1007/s11947-022-02922-0.

[58] R. Chen et al., “Improving carrier mobility of near-amorphous donor–acceptor conjugated polymer thin films via promoting intensive and continuous polymer aggregations,” Macromolecules, vol. 56, pp. 5356–5368, 2023, doi: 10.1021/acs. macromol.3c00316.

[59] M. Fiedot-Toboła, A. Dmochowska, R. Jędrzejewski, W. Stawiński, B. Kryszak, and J. Cybińska, “Pectin-organophilized ZnO nanoparticles as sustainable fillers for high-density polyethylene composites,” International Journal of Biological Macromolecules, vol. 182, pp. 1832–1842, 2021, doi: 10.1016/j.ijbiomac.2021.05.133.

[60] J. John, A. P. Deshpande, and S. Varughese, “Morphology control and ionic crosslinking of pectin domains to enhance the toughness of solvent cast PVA/pectin blends,” Journal of Applied Polymer Science, vol. 138, p. 50360, 2021, doi: 10.1002/app.50360.

[61] N. S. Said, I. F. Olawuyi, and W. Y. Lee, “Pectin hydrogels: Gel-forming behaviors, mechanisms, and food applications,” Gels, vol. 9, p. 732, 2023, doi: 10.3390/gels9090732.

[62] M. Michael, M. Masytha, I. Iriany, and T. Taslim, “Multistage pectin extraction from lemon (Citrus limon) peel: Effect of nitric acid solvent pH and number of stages,” IOP Conference Series: Earth and Environmental Science, vol. 1445, 2025, doi: 10.1088/1755-1315/1445/1/012054.

[63] S. Samal and I. Blanco, “Investigation of dispersion, interfacial adhesion of isotropic and anisotropic filler in polymer composite,” Applied Sciences, vol. 11, no. 8, p. 8561, 2021, doi: 10.3390/app11188561.

[64]  T. Huang, Y. Qin, M. Li, S. Gaol, and C. Shen, “Preparation and characterization of deacetylated konjac glucomannan/pectin composite films crosslinked with calcium hydroxide,” Journal of Polymer Research, vol. 29, p. 238, 2022, doi: 10.1007/s10965-022-03090-7.

[65] R. Sidabutar et al., “Synergistic integration of zeolite engineering and fixed-bed column design for enhanced biogas upgrading: Adsorbent synthesis, CO2/CH4 separation kinetics, and regeneration assessment,” Separation and Purification Technology, vol. 355, p. 129722, 2025, doi: 10.1016/j.seppur.2024.129772.

[66] A. Mahmood et al., “Aloe vera-based polymeric network: A promising approach for sustained drug delivery, development, characterization, and in vitro evaluation,” Gels, vol. 9, p. 474, 2023, doi: 10.3390/gels9060474.

[67] D. Sharma and B. Singh, “Designing aloe vera-sterculia gum based copolymeric hydrogel dressings for drug delivery,” Hybrid Advances, vol. 5, 2024, doi: 10.1016/j.hybadv.2024.100142.

[68] N. S. Said, I. F. Olawuyi, and W. Y. Lee, “Pectin hydrogels: Gel-forming behaviors, mechanisms, and food applications,” Gels, vol. 9, pp. 732, 2023, doi: 10.3390%2Fgels9090732.

[69] S. Zhao et al., “Elucidating the impact of intermolecular forces on the formation and internal structure of high-methoxyl pectin aggregates,” Food Chemistry, vol. 487, 2025, p. 144765, doi: 10.1016/j.foodchem. 2025.144765.

[70] A. Kocira, K. Kozlowicz, K. Panasiewicz, M. Staniak, E. S. Krok, and P. Hortynska, “Polysaccharides as edible films and coatings: characteristics and influence on fruit and vegetable quality—A review,” Agronomy, vol. 11, p. 813, 2021, doi: 10.3390/agronomy11050813.

[71] B. Surekha, P. Misra, A. C. Thippaiah, B. R. Shamanna, A. Madathilc, and M. Rajadurai, “A microneedle transdermal patch loaded with iron(II) nanoparticles for non-invasive sustained delivery to combat anemia,” Materials Advances, vol. 5, pp. 3247–3256, 2024, doi: 10.1039/d3ma 01166f.

[72] A. Virani, V. Puri, H. Mohd, and B. Michniak-Kohn, “Effect of penetration enhancers on transdermal delivery of oxcarbazepine, an antiepileptic drug using microemulsions,” Pharmaceutics, vol. 15, p. 183, 2023, doi: 10.3390/pharmaceutics15010183.

[73]  R. K. Arya, D. Thapliyal, J. Sharma, and G. D. Verros, “Glassy polymers—Diffusion, sorption, ageing and applications,” Coatings, vol. 11, p. 1049, 2021, doi: 10.3390/coatings11091049.

[74] R. T. Stiepel et al., “A predictive mechanistic model of drug release from surface eroding polymeric nanoparticles,” Journal of Controlled Release, vol. 351, pp. 883–895, 2022, doi: 10.1016/j.jconrel.2022.09.067.

[75] A. K. Kodoth, V. M. Ghate, S. A. Lewis, B. Prakash, and V. Badalamoole, “Pectin-based silver nanocomposite film for transdermal delivery of Donepezil,” International Journal of Biological Macromolecules, vol. 134, pp. 269–279, 2019, doi: 10.1016/j.ijbiomac.2019.04.191.

[76] Z. Li, M. Cai, K. Yang, and P. Sun, “Kinetic study of d-limonene release from finger citron essential oil loaded nanoemulsions during simulated digestion in vitro,” Journal of Functional Foods, vol. 58, pp. 67–73, 2019, doi: 10.1016/j.jff.2019.04.056.

[77] M. Ganje, S. M. Jafari, A. M. Tamadon, M. Niakosari, and Y. Maghsoudlou, “Mathematical and fuzzy modeling of limonene release from amylose nanostructures and evaluation of its release kinetics,” Food Hydrocolloids, vol. 95, pp. 186–194, 2019, doi: 10.1016/j.foodhyd.2019. 04.039.

[78]  D. Yan, W. Ouyang, J. Lin, and Z. Liu, “Smart coating by thermo-sensitive Pluronic F-127 for enhanced corneal healing via delivery of biological macromolecule progranulin,” International Journal of Biological Macromolecules, vol. 253, p. 127586, 2023, doi: 10.1016/j.ijbiomac.2023. 127586.

[79]  E. M. Eissa et al., “pH-Sensitive in situ gel of mirtazapine invasomes for rectal drug delivery: protruded bioavailability and anti-depressant efficacy,” Pharmaceuticals, vol. 17, p. 978, 202, doi: 10.3390/ph17080978.

Full Text: PDF

DOI: 10.14416/j.asep.2026.01.004

Refbacks

  • There are currently no refbacks.