Exploring the Potential of Cationic Modified Microfibrillated/Nanocellulose as Slow/Controlled Release Fertilizers: A Review
Abstract
Keywords
[1] International Fertilizer Association (IFA). “Fertilizer consumption - historical trends by country or region.” ifastat.org. Accessed: Nov. 23, 2023. [Online.] Available: https://www.ifastat.org/databases/graph/1_1
[2] D. França, L. M. Angelo, C. F. Souza, and R. Faez, “Biobased poly(3-hydroxybutyrate)/ starch/cellulose nanofibrils for nutrients coatings,” ACS Applied Polymer Materials, vol. 3, 2021, Art. no. 3227, doi: 10.1021/acsapm. 1c00418.
[3] H. Seddighi, K. Shayesteh, N. Omrani, and E. Pouya, “Fertilizers coating methods: A mini review of various techniques,” Chemical Research in Technology, vol. 1, 2024, Art. no. 38, doi: 10.22034/chemrestec.2024.444838.1008.
[4] O. M. Abioye, A. A. Okunola, M. F. Amodu, D. A. Olaseheinde, and K. O. Yusuf, “Nanobiofertilizer and its application in sustainable agriculture, crop specific nutrients delivery and environmental sustainability: a review,” Applied Science and Engineering Progress, vol. 17, no. 3, 2024, Art. no. 7339, doi: 10.14416/j.asep.2024.05.001.
[5] O. M. Abioye and D. A. Olasehinde, “The role of biofertilizers in sustainable agriculture: an eco-friendly alternative to conventional chemical fertilizers,” Applied Science and Engineering Progress, vol. 17, no. 1, 2024, Art. no. 6883, doi: 10.14416/j.asep.2023.07.001.
[6] E. C. Torres and C. G. G. Somera, “How organic fertilizers can be used as a plant nutrient source in hydroponics: A review,” Applied Science and Engineering Progress, vol. 16, no. 4, 2023, Art. no. 6359, doi: 10.14416/j.asep.2022.11.002.
[7] I. Firmansyah, M. Syakir, and L. Lukman, “The influence of dose combination fertilizer N, P, and K on growth and yield of eggplant crops (Solanum melongena L.),” Jurnal Hortikultura, vol. 27, no. 1, pp. 69–78, 2017, doi: 10.21082/ jhort.v27n1.2017.p69-78.
[8] T. H. Kim and S. M. Kim, “Effects of SPAD value variations according to nitrogen application levels on rice yield and its components,” Frontiers in Plant Science, vol. 15, 2024, Art. no. 1437371, doi: 10.3389/fpls. 2024.1437371.
[9] Statista Research Department. “Production of urea worldwide from 2009 to 2021.” statista.com. Accessed: Nov. 23, 2023. [Online.] Available: https://www.statista.com/topics/8956/fertilizer-industry-worldwide/#topicOverview
[10] S. C. Tripathi, N. Kumar, and K. Venkatesh, “Nano urea’s environmental edge and economic efficacy in boosting wheat grain yield across diverse Indian agro-climates,” Scientific Reports, vol. 15, no. 1, 2025, Art. no. 3598, doi: 10.1038/s41598-024-83616-9.
[11] P. Škarpa, D. Mikušová, J. Antošovský, M. Kučera, and P. Ryant, “Oil-based polymer coatings on can fertilizer in oilseed rape (Brassica napus l.) nutrition,” Plants, vol. 10, no. 8, 2021, Art. no. 1605, doi: 10.3390/plants 10081605.
[12] Y. K. Singh, N. Ram, V. K. Tiwari, B. Singh, U. Sharma, Supriya, and D. Katiyar, “Performance of wheat (Triticum aestivum L.) influenced by the application of nano-fertilizers,” International Journal of Plant and Soil Science, vol. 35, no. 13, 2023, Art. no. 262, doi: 10.9734/ijpss/2023/ v35i133178.
[13] V. Kyttä, J. Helenius, and H. L. Tuomisto, “Carbon footprint and energy use of recycled fertilizers in arable farming,” Journal of Cleaner Production, vol. 287, 2021, Art. no. 125063, doi: 10.1016/j.jclepro.2020.125063.
[14] W. Chen, Y. Geng, J. Hong, D. Yang, and X. Ma, “Life cycle assessment of potash fertilizer production in China,” Resources, Conservation and Recycling, vol. 138, 2018, Art. no. 238, doi: 10.1016/j.resconrec.2018.07.028.
[15] Y. Ding, X. Huang, Y. Li, H. Liu, Q. Zhang, X. Liu, J. Xu, and H. Di, “Nitrate leaching losses mitigated with intercropping of deep-rooted and shallow-rooted plants,” Journal of Soils and Sediments, vol. 21, no. 1, 2021, Art. no. 364, doi: 10.1007/s11368-020-02733-w.
[16] R. Quirós, G. Villalba, X. Gabarrell, and P. Muñoz, “Life cycle assessment of organic and mineral fertilizers in a crop sequence of cauliflower and tomato,” International Journal of Environmental Science and Technology, vol. 12, no. 10, 2015, Art. no. 0756, doi: 10.1007/s13762-015-0756-7.
[17] United Nations Environment Programme (UNEP), “Synthesis report on the environmental and health impacts of pesticides and fertilizers and ways to minimize them: Envisioning a chemical-safe world,” UNEP, Nairobi, Kenya, 2022.
[18] L. R. Widowati and S. De Neve, “Nitrogen dynamics and nitrate leaching in intensive vegetable rotations in highlands of Central Java, Indonesia,” Journal of Tropical Soils, vol. 21, no. 2, pp. 67–78, 2017, doi: 10.5400/jts.2016. v21i2.67-78.
[19] L. Quinn, University of Illinois Urbana-Champaign. “Proposed nitrogen fertilizer policies could protect farmer profits, environment.” aces.illinois.edu. Accessed: Mar. 24, 2005. [Online.] Available: https://aces.illinois.edu/news/study-proposed-nitrogen-fertilizer-policies-could-protect-farmer-profits-environment
[20] J. Henneman, Agupdate. “Nitrate leaching costs money, water health on farms.” agupdate.com. Accessed: Nov. 30, 2023. [Online.] Available: https://agupdate.com/article_3747b480-b9df-11ed-9da0-3f26d5d5e327.html
[21] Y. Suteja and A. I. S. Purwiyanto, “Nitrate and phosphate from rivers as mitigation of eutrophication in Benoa bay, Bali-Indonesia,” presented at the 1st International Conference on Maritime Sciences and Advanced Technology, Denpasar, Indonesia, Aug. 3–5, 2017.
[22] T. Bantacut and J. Pradifta, “Nitrogen cycling in Indonesian agriculture around 1968 to 2008 and its environmental impacts,” Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management, vol. 8, no. 3, pp. 308–318, 2018, doi: 10.29244/jpsl.8.3.308-318.
[23] W. Li, S. Guo, H. Liu, L. Zhai, H. Wang, and Q. Lei, “Comprehensive environmental impacts of fertilizer application vary among different crops: Implications for the adjustment of agricultural structure aimed to reduce fertilizer use,” Agricultural Water Management, vol. 210, pp. 1–10, 2018, doi: 10.1016/j.agwat.2018.07.044.
[24] M. A. A. Jwaideh, E. H. Sutanudjaja, and C. Dalin, “Global impacts of nitrogen and phosphorus fertiliser use for major crops on aquatic biodiversity,” International Journal of Life Cycle Assessment, vol. 27, no. 8, pp. 1058–1080, 2022, doi: 10.1007/s11367-022-02078-1.
[25] S. Fertahi, M. Ilsouk, Y. Zeroual, A. Oukarroum, and A. Barakat, “Recent trends in organic coating based on biopolymers and biomass for controlled and slow release fertilizers,” Journal of Controlled Release, vol. 330, pp. 341–361, 2021, doi: 10.1016/j.jconrel.2020.12.026.
[26] B. Azeem et al., “Valorization of almond shells’ lignocellulosic microparticles for controlled release urea production: interactive effect of process parameters on longevity and kinetics of nutrient release,” Journal of Coatings Technology and Research, vol. 19, no. 2, 2022, Art. no. 00554, doi: 10.1007/s11998-021-00554-1.
[27] M. Marcińczyk and P. Oleszczuk, “Biochar and engineered biochar as slow- and controlled-release fertilizers,” Journal of Cleaner Production, vol. 339, pp. 1–14, 2022, doi: 10.1016/j.jclepro.2022.130685.
[28] A. Firmanda, F. Fahma, K. Syamsu, L. Suryanegara, and K. Wood, “Controlled/slow-release fertilizer based on cellulose composite and its impact on sustainable agriculture: review,” Biofuels, Bioproducts and Biorefining, vol. 16, no. 6. 2022, Art. no. 130685, doi: 10.1002/bbb.2433.
[29] M. H. Pang, L. X. Li, S. Q. Dong, D. S. Liu, H. Y. Li, and L. N. Liang, “Research progress on nano-materials application in slow/controlled-release fertilizers,” Journal of Plant Nutrition and Fertilizers, vol. 28, no. 9, pp. 1708–1719, 2022, doi: 10.11674/zwyf.2022131.
[30] V. Dhanushkodi, T. B. Priyadharshini, M. Baskar, S. Meena, K. Senthil, and T. U. Maheshwari, “Slow and controlled release nitrogen fertilizers: Options for improving rice productivity: A review,” International Journal of Plant amd Soil Science, vol. 34, no. 24, Art. no. IJPSS 95894, 2022, doi: 10.9734/ijpss/2022/ v34i242726.
[31] J. Jayanudin and R. S. D. Lestari, “Encapsulation and characterization of controlled release of NPK fertilizer using glutaraldehyde-crosslinked chitosan,” Alchemy: Jurnal Penelitian Kimia, vol. 16, no. 1, pp. 110–125, 2020, doi: 10.20961/alchemy.16.1.34711.110-125.
[32] A. Firmanda et al., “Factors influencing the biodegradability of agro-biopolymer based slow or controlled release fertilizer,” Journal of Polymers and the Environment,, vol. 31, pp. 1706–1724, 2022, doi: 10.1007/s10924-022-02718-5.
[33] F. Chen et al., “Developing slow release fertilizer through in-situ radiation-synthesis of urea-embedded starch-based hydrogels,” Industrial Crops and Products, vol. 191, 2023, Art. no. 115971, doi: 10.1016/j.indcrop.2022.115971.
[34] T. Li, B. Gao, Z. Tong, Y. Yang, and Y. Li, “Chitosan and graphene oxide nanocomposites as coatings for controlled-release fertilizer,” Water, Air, and Soil Pollution, vol. 230, no. 7, pp. 1–9, 2019, doi: 10.1007/s11270-019-4173-2.
[35] X. Wei, J. Chen, B. Gao, and Z. Wang, “Role of controlled and slow release fertilizers in fruit crop nutrition,” in Fruit Crops: Diagnosis and Management of Nutrient Constraints, Amsterdam, Netherlands: Elsevier, 2019.
[36] A. A. L. Aasmi et al., “Impacts of slow-release nitrogen fertilizer rates on the morpho-physiological traits, yield, and nitrogen use efficiency of rice under different water regimes,” Agriculture, vol. 12, no. 1, 2022, Art. no. 86, doi: 10.3390/agriculture12010086.
[37] Q. Duan et al., “Fabrication, evaluation methodologies and models of slow-release fertilizers: A review,” Industrial Crops and Products, vol. 192. 2023, Art. no. 116075, doi: 10.1016/j.indcrop.2022.116075.
[38] P. Vejan, T. Khadiran, R. Abdullah, and N. Ahmad, “Controlled release fertilizer: A review on developments, applications and potential in agriculture,” Journal of Controlled Release, vol. 339, pp. 321–334, 2021, doi: 10.1016/j.jconrel. 2021.10.003.
[39] Suwardi, D. T. Suryaningtyas, A. Ghofar, M. Rosjidi, A. Mustafa, and H. Saputra, “Effect of polyethylene glycol and humic acid coating on NPK release from controlled-release fertilizer,” The Scientific World Journal, vol. 2024, 2024, Art. no. 5510660, doi: 10.1155/2024/5510660.
[40] J. Fu, C. Wang, X. Chen, Z. Huang, and D. Chen, “Classification research and types of slow controlled release fertilizers (SRFs) used - A review,” Communications in Soil Science and Plant Analysis, vol. 49, no. 17, pp. 2219–2230, 2018, doi: 10.1080/00103624.2018.1499757.
[41] Data Bridge Market Research. “Global slow-release fertilizers market – industry trends and forecast to 2029.” databridgemarketresearch. com. Accessed: Nov. 23, 2023. [Online.] Available: https://www.databridgemarketresearch.com/reports/global-slow-release-fertilizers-market?srsltid=AfmBOopY7yDmWkY1-vhkz95YFrz-YwKdaUC76X6qpL3HeZpmymN4ypRT
[42] F. B. Insights. “Controlled-release fertilizers market size, share & industry analysis, by type (slow-release, coated & encapsulated, and nitrogen stabilizers), application (cereals, oilseeds & pulses, fruits & vegetables, & others), and regional forecasts, 2019–2032.” fortunebusinessinsights.com. Accessed: Nov. 24, 2023. [Online.] Available: https://www. fortunebusinessinsights.com/controlled-release-fertilizers-crf-market-101973
[43] A. C. M. Cidreira, L. Wei, A. Aldekhail, and R. Islam Rubel, “Controlled-release nitrogen fertilizers: A review on bio-based and smart coating materials,” Journal of Applied Polymer Science, vol. 142, no. 3, 2024, Art. no. e56390, doi: 10.1002/app.56390.
[44] A. K. Singh, “Bio-based materials for fabrication of controlled-release coated fertilizers to enhance soil fertility: A review,” Next Materials, vol. 8, 2025, Art. no. 100701, doi: 10.1016/j.nxmate.2025.100701.
[45] E. M. Eddarai, M. E. Mouzahim, B. Ragaoui, S. Eladaoui, Y. Bourd, A. Bellaouchou, R. Boussen, “Review of current trends in chitosan based controlled and slow-release fertilizer: from green chemistry to circular economy,” Internatonal Journal of Biological Macromolecules, vol. 278, 2024, Art. no. 134982, doi: 10.1016/ j.ijbiomac.2024.134982.
[46] T. Diao, R. Liu, Q. Meng, and Y. Sun, “Microplastics derived from polymer-coated fertilizer altered soil properties and bacterial community in a Cd-contaminated soil,” Applied Soil Ecology, vol. 183, 2023, Art. no. 104694, doi: 10.1016/j.apsoil.2022.104694.
[47] P. Boberski, M. Główka, K. Torchała, G. Kulczycki, and N. Kuźnik, “Sustainable agriculture solutions: Biodegradable coatings for enhanced-efficiency fertilizers using cellulose and lignin,” Journal of Agricultural and Food Chemistry, vol. 73, no. 22, pp. 13105–13124, 2025, doi: 10.1021/acs.jafc.5c01173.
[48] H. Galahitigama et al., “Assessing the impact of micro and nanoplastics on the productivity of vegetable crops in terrestrial horticulture: A comprehensive review,” Environmental Monitoring and Assessment, vol. 197, no. 4, 2025, Art. no. 404, doi: 10.1007/s10661-025-13820-1.
[49] X. Chen, B. Lu, B. Lv, and S. Sun, “Lignin-based controlled-release urea improves choy sum growth by regulating soil nitrogen nutrients and bacterial diversity,” Frontiers in Plant Science, vol. 15, 2024, Art. no. 1488332, doi: 10.3389/ fpls.2024.1488332.
[50] R. V. McQuillan, O. Mazaheri, G. W. Stevens, and K. A. Mumford, “Sustainable shellac coatings for controlled release fertilizers: Experimental and modeled performance,” ACS Sustainable Chemistry Engineering, vol. 13, no. 21, pp. 7949–7961, 2025, doi: 10.1021/ acssuschemeng.5c01566.
[51] M. Wu et al., “Slow-release urea fertilizer with polymer and biochar-based organic coatings: design, field trials and global economic implications,” Industrial Crops and Products, vol. 235, 2025, Art. no. 121738, doi: 10.1016/ j.indcrop.2025.121738.
[52] W. Yang et al., “Preparation and properties of slow-release fertilizer containing urea encapsulated by pinecone biochar and cellulose acetate,” International Journal of Biological Macromolecules, vol. 315, 2025, Art. no. 144448, doi: 10.1016/j.ijbiomac.2025.144448.
[53] S. Zhang, X. Fu, Z. Tong, G. Liu, S. Meng, and Y. Yang, “Lignin − clay nanohybrid biocomposite-based double-layer coating materials for controllable-release fertilizer,” ACS Sustain. Chemistry and Engineering, vol. 8, no. 51, pp. 18957–18965, 2020, doi: 10.1021/ acssuschemeng.0c06472.
[54] P. Ponnusamy, M. Loganathan, and S. Krishnasamy, “Mass transfer modelling and nitrogen release kinetics of nano-biochar dispersed PVA/PVP matrix encapsulated slow-release fertilizer for sustainable agriculture,” Chemical Engineering Journal Advances, vol. 23, 2025, Art. no. 100817, doi: 10.1016/j.ceja. 2025.100817.
[55] A. A. Sulianto et al., “Pectin-based hydrogels produced from banana and mango peels as a potential approach to removing heavy metal ions from contaminated water,” Applied Science and Engineering Progress, vol. 18, no. 4, 2025, Art. no. 7717, doi: 10.14416/j.asep.2025.03.004.
[56] P. Joradon et al., “Development of lion’s mane mushroom extract-loaded polyvinyl alcohol/chitosan hydrogel film composites for controlled release of ergosterol,” Applied Science and Engineering Progress, vol. 18, no. 1, 2025, Art. no. 7496, doi: 10.14416/j.asep. 2024.08.008.
[57] R. Kumar, B. Rai, S. Gahlyan, and G. Kumar, “A comprehensive review on production, surface modification and characterization of nanocellulose derived from biomass and its commercial applications,” Express Polymer Letters vol. 15, no. 2, pp. 104–120, 2021, doi: 10.3144/expresspolymlett.2021.11.
[58] M. N. Norizan et al., “Nanocellulose-based nanocomposites for sustainable applications: A review,” Nanomaterials, vol. 12, no. 19, 2022, Art. no. 3483, doi: 10.3390/nano12193483.
[59] I. A. Dewi et al., “The potential of oil palm empty fruit bunches from Blitar Regency Indonesia as a filling material for NPK slow-release fertilizer,” in IOP Conference Series: Earth and Environmental Science, 2024, vol. 1358, Art. no. 012009, doi: 10.1088/1755-1315/1358/1/012009.
[60] F. N. M. Padzil, S. H. Lee, Z. M. A. Ainun, C. H. Lee, and L. C. Abdullah, “Potential of oil palm empty fruit bunch resources in nanocellulose hydrogel production for versatile applications: A review,” Materials, vol. 13, no. 5, 2020, Art. no. 1245, doi: 10.3390/ma13051245.
[61] N. Timmer, D. Gore, D. Sanders, T. Gouin, and S. T. J. Droge, “Toxicity mitigation and bioaccessibility of the cationic surfactant cetyltrimethylammonium bromide in a sorbent-modified biodegradation study,” Chemosphere, vol. 222, pp. 461–468, 2019, doi: 10.1016/j.chemosphere.2019.01.152.
[62] I. Kassem et al., “Cellulose nanocrystals-filled poly (vinyl alcohol) nanocomposites as waterborne coating materials of NPK fertilizer with slow release and water retention properties,” International Journal of Biological Macromolecules, vol. 189, pp. 1029–1042, 2021, doi: 10.1016/j.ijbiomac.2021.08.093.
[63] N. Sarhan, E. G. Arafa, N. Elgedawy, K. N. M. Elsayed, and F. Mohamed, “Urea intercalated encapsulated microalgae composite hydrogels for slow-release fertilizers,” Scientific Reports, vol. 14, no. 1, 2024, Art. no. 15032, doi: 10.1038/s41598-024-58875-1.
[64] J. Liu, R. Yang, Y. Wang, F. Hua, and S. Tong, “Cationic cellulose nanofibers with efficient anionic dye adsorption: adsorption mechanism and application in salt-free dyeing of paper,” Cellulose, vol. 29, no. 3, pp. 2047–2061, 2022, doi: 10.1007/s10570-021-04406-4.
[65] A. K. Tamo, “Nanocellulose-based hydrogels as versatile materials with interesting functional properties for tissue engineering applications,” Journal of Materials Chemistry B, vol. 12, no. 32, 2024, Art no. 7692, doi: 10.1039/d4tb00397g.
[66] D. França, G. Siqueira, G. Nyström, F. Clemens, C. F. Souza, and R. Faez, “Charged-cellulose nanofibrils as a nutrient carrier in biodegradable polymers for enhanced efficiency fertilizers,” Carbohydrate Polymers, vol. 296, 2022, Art. no. 119934, doi: 10.1016/j.carbpol.2022.119934.
[67] R. Xue et al., “Controlled-release nitrogen fertilizer enhances saline – alkali soil organic carbon by activating straw decomposition agents,” Agronomy, vol. 15, 2025, Art. no. 2053, doi: 10.3390/agronomy15092053.
[68] D. N. Iqbal et al., “Nanocellulose/wood ash-reinforced starch-chitosan hydrogel composites for soil conditioning and their impact on pea plant growth,” RSC Advances, vol. 14, no. 13, 2024, Art. no. 8652, doi: 10.1039/d3ra08725e.
[69] K. Lu, R. Abouzeid, Q. Wu, Q. Chen, and S. Liu, “Hydrogel nanocomposite based slow-release urea fertilizer: Formulation, structure, and release behavior,” Giant, vol. 18, 2024, Art. no. 100270, doi: 10.1016/j.giant.2024.100270.
[70] Y. Ruberto, V. Vivod, J. J. Grkman, G. Lavrič, C. Graiff, and V. Kokol, “Slot-die coating of cellulose nanocrystals and chitosan for improved barrier properties of paper,” Cellulose, vol. 31, no. 6, pp. 3589–3606, 2024, doi: 10.1007/s10570-024-05847-3.
[71] L. Solhi et al., “Understanding nanocellulose-water interactions: Turning a detriment into an asset,” Chemical Reviews, vol. 123, no. 5, pp. 1925–2015, 2023, doi: 10.1021/acs.chemrev. 2c00611.
[72] A. Pandey, A. S. Kalamdhad, and Y. C. Sharma, “Deciphering adsorption behaviour and mechanisms of enhanced phosphate removal via optimized cetyltrimethylammonium bromide-modified nanofibrillated cellulose,” International Journal of Biological Macromolecules, vol. 288, 2025, Art. no. 138743, doi: 10.1016/j.ijbiomac. 2024.138743.
[73] N. S. M. Said, S. B. Kurniawan, N. M. Daud, S. S. N. Sharuddin, R. A. Barakwan, and A. A. I. Luthfi, “Bridging the gap in nutrient management: Transitioning from conventional to sustainable slow-release fertilizers in modern agriculture,” Journal of Cleaner Production, vol. 513, 2025, Art. no. 145731, doi: 10.1016/j.jclepro.2025.145731.
[74] X. Zhao et al., “Enhancing slow-release performance of biochar-based fertilizers with kaolinite-infused polyvinyl alcohol/starch coating: from fertilizer development to field application,” International Journal of Biological Macromolecules, vol. 302, 2025, Art. no. 140665, doi: 10.1016/j.ijbiomac.2025.140665.
[75] S. Singh et al., “Smart fertilizer technologies: an environmental impact assessment for sustainable agriculture,” Smart Agricultural Technology, vol. 8, 2024, Art. no. 100504, doi: 10.1016/j.atech.2024.100504.
[76] H. Ji et al., “Facile synthesis, release mechanism, and life cycle assessment of amine-modified lignin for bifunctional slow-release fertilizer,” International Journal of Biological Macromolecules, vol. 278, 2024, Art no. 134618, doi: 10.1016/ j.ijbiomac.2024.134618.
[77] H. Y. Wei et al., “Effects of slow/controlled release fertilizer types and their application regime on yield in rice with different types of panicle,” Acta Agronomica Sinica, vol. 43, no. 5, pp. 730–740, 2017, doi: 10.3724/SP.J.1006. 2017.00730.
[78] A. L. T. Fernandes, T. de Oliveira Tavares, E. Mosca, R. T. Ferreira, and L. A. Simão, “Technical and economic feasibility of controlled release fertilizer in production coffee crop,” Revista de Gestao Social e Ambiental, vol. 18, no. 1, 2023, Art. no. e04402, doi: 10.24857/ rgsa.v18n1-027.
[79] D. H. H. Sim et al., “Biochar-based slow/controlled-release fertilizer for sustainable agriculture: Recent advances , challenges and future prospects,” Journal of Environmental Chemical Engineering, vol. 13, 2025. Art. no. 118826, doi: 101016/j.jece.2025.118826.
[80] E. Priya, S. Sarkar, and P. K. Maji, “A review on slow-release fertilizer: Nutrient release mechanism and agricultural sustainability,” Journal of Environmental Chemical Engineering, vol. 12, no. 4, 2024, Art. no. 113211, doi: 10.1016/ j.jece.2024.113211.
[81] A. Lateef et al., “Synthesis and characterization of zeolite based nano-composite: An environment friendly slow release fertilizer,” Microporous Mesoporous Materials, vol. 232, pp. 174–183, 2016, doi: 10.1016/j.micromeso. 2016.06.020.
[82] B. Xie, K. Du, F. Huang, Z. Lin, and L. Wu, “Cationic nanomaterials for autoimmune diseases therapy,” Frontiers in Pharmacology, vol. 12, 2022, Art. no. 762362, doi: 10.3389/ fphar.2021.762362.
[83] I. W. Arnata, S. Suprihatin, F. Fahma, N. Richana, and T. C. Sunarti, “Cationic modification of nanocrystalline cellulose from sago fronds,” Cellulose, vol. 27, no. 6, pp. 3121–3141, 2020, doi: 10.1007/s10570-019-02955-3.
[84] M. Börjesson and G. Westman, “Cellulose - fundamental aspects and current trends. Chapter 7. Crystalline nanocellulose — preparation, modification, and properties,” InTech, pp. 159–191, 2015, doi: 10.5772/61899.
[85] P. Bertsch and P. Fischer, “Adsorption and interfacial structure of nanocelluloses at fluid interfaces,” Advances in Colloid and Interface Science, vol. 276. 2020, Art. no. 102089, doi: 10.1016/j.cis.2019.102089.
[86] R. Curvello, V. S. Raghuwanshi, and G. Garnier, “Engineering nanocellulose hydrogels for biomedical applications,” Advances in Colloid and Interface Science, vol. 267. pp. 47–61, 2019, doi: 10.1016/j.cis.2019.03.002.
[87] G. F. de Lima, A. G. de Souza, and D. S. Rosa, “Effect of adsorption of polyethylene glycol (PEG), in aqueous media, to improve cellulose nanostructures stability,” Journal of Molecular Liquids, vol. 268, pp. 415–424, 2018, doi: 10.1016/j.molliq.2018.07.080.
[88] P. Panchal, E. Ogunsona, and T. Mekonnen, “Trends in advanced functional material applications of nanocellulose,” Processes, vol. 7, no. 10. pp. 1–27, 2019, doi: 10.3390/pr7010010.
[89] W. Lin et al., “Hydrophobic modification of nanocellulose via a two-step silanation method,” Polymers (Basel), vol. 10, no. 9, 2018, Art. no. 1035, doi: 10.3390/POLYM10091035.
[90] C. Wang et al., “Effect of slow-release fertilizer on soil fertility and growth and quality of wintering Chinese chives (Allium tuberm Rottler ex Spreng.) in greenhouses,” Scientific Reports, vol. 11, no. 1, 2021, Art. no. 8070, doi: 10.1038/s41598-021-87593-1.
[91] X. Guo, B. Zhao, L. Wang, Z. Zhang, J. Li, and Z. Gao, “High flux nanofiltration membrane via surface modification using spirocyclic quaternary ammonium diamine for efficient antibiotics/salt separation,” Separation and Purification Technology, vol. 325, 2023, Art. no. 124736, doi: 10.1016/j.seppur.2023.124736.
[92] I. A. A. Silva, O. F. L. de Macedo, G. C. Cunha, R. V. M. Oliveira, and L. P. C. Romão, “Using water hyacinth (Eichhornia crassipes) biomass and humic substances to produce urea-based multi-coated slow release fertilizer,” Cellulose, vol. 28, no. 6, pp. 3691–3701, 2021, doi: 10.1007/s10570-021-03741-w.
[93] R. Sunasee and U. D. Hemraz, “Synthetic strategies for the fabrication of cationic surface-modified cellulose nanocrystals,” Fibers, vol. 6, no. 15, pp. 1–19, 2018, doi: 10.3390/ FIB6010015.
[94] J. Xie and S. Liu, “A review of hydrophobic nanocellulose and its applications,” Paper and Biomaterials, vol. 6, no. 2. pp. 35–42, 2021, doi: 10.12103/j.issn.2096-2355.2021.02.004.
[95] M. Mariano, L. W. Hantao, J. da Silva Bernardes, and M. Strauss, “Microstructural characterization of nanocellulose foams prepared in the presence of cationic surfactants,” Carbohydrate Polymers, vol. 195, no. April, pp. 153–162, 2018, doi: 10.1016/j.carbpol.2018.04.075.
[96] W. Jiang, P. Shen, J. Yi, L. Li, C. Wu, and J. Gu, “Surface modification of nanocrystalline cellulose and its application in natural rubber composites,” Journal of Applied Polymer Science, vol. 137, no. 39, 2020, Art. no. e49163, doi: 10.1002/app.49163.
[97] M. Ly and T. H. Mekonnen, “Cationic surfactant modified cellulose nanocrystals for corrosion protective nanocomposite surface coatings,” Journal of Industrial and Engineering Chemistry, vol. 83, pp. 409–420, 2020, doi: 10.1016/j.jiec.2019.12.014.
[98] C. Tang et al., “Pickering emulsions stabilized by hydrophobically modified nanocellulose containing various structural characteristics,” Cellulose, vol. 26, no. 13–14, pp. 7753–7767, 2019, doi: 10.1007/s10570-019-02648-x.
[99] M. Castaño and M. Osorio, “Development of genistein drug delivery systems based on bacterial nanocellulose for potential colorectal cancer chemoprevention : Effect of nanocellulose surface modification on genistein adsorption,” Molecules, vol. 27, 2022, Art. no. 7201, doi: 10.3390/molecules27217201.
[100] X. Gong, M. F. Ismail, and Y. Boluk, “Interactions between cetyltrimethylammonium bromide modified cellulose nanocrystals and surfaces : An ellipsometric study,” Surfaces, vol. 7, pp. 428–441, 2024, doi: 10.3390/ surfaces7020027.
[101] E. Subbotina, P. Olsén, F. Ram, S. V Dvinskikh, and L. A. Berglund, “Aqueous synthesis of highly functional , hydrophobic, and chemically recyclable cellulose nanomaterials through oxime ligation,” Nature Communications, vol. 13, 2022, Art. no. 6924, doi: 10.1038/s41467-022-34697-5.
[102] N. Lin, A. Gèze, D. Wouessidjewe, J. Huang, and A. Dufresne, “Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery,” ACS Applied Materials and Interfaces, vol. 8, no. 11, pp. 6880–6889, 2016, doi: 10.1021/acsami.6b00555.
[103] M. Hasani, E. D. Cranston, G. Westman, and D. G. Gray, “Cationic surface functionalization of cellulose nanocrystals,” Soft Matter, vol. 4, no. 11, pp. 2238–2244, 2008, doi: 10.1039/ b806789a.
[104] E. Feese, H. Sadeghifar, H. S. Gracz, D. S. Argyropoulos, and R. A. Ghiladi, “Photobactericidal porphyrin-cellulose nanocrystals: Synthesis, characterization, and antimicrobial properties,” Biomacromolecules, vol. 12, no. 10, pp. 3528–3539, 2011, doi: 10.1021/ bm200718s.
[105] S. Eyley and W. Thielemans, “Imidazolium grafted cellulose nanocrystals for ion exchange applications,” Chemical Communication, vol. 47, no. 14, pp. 4177–4179, 2011, doi: 10.1039/c0cc05359g.
[106] L. Jasmani, S. Eyley, R. Wallbridge, and W. Thielemans, “A facile one-pot route to cationic cellulose nanocrystals,” Nanoscale, vol. 5, no. 21, pp. 10207–10211, 2013, doi: 10.1039/ c3nr03456a.
[107] J. Tang, M. F. X. Lee, W. Zhang, B. Zhao, R. M. Berry, and K. C. Tam, “Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino) ethyl methacrylate] grafted cellulose nanocrystals,” Biomacromolecules, vol. 15, no. 8, pp. 3052–3060, 2014, doi: 10.1021/bm500663w.
[108] H. Rosilo et al., “Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding,” Nanoscale, vol. 6, no. 20, pp. 11871–11881, 2014, doi: 10.1039/c4nr03584d.
[109] K. H. M. Kan, J. Li, K. Wijesekera, and E. D. Cranston, “Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants,” Biomacromolecules, vol. 14, no. 9, pp. 3130–3139, 2013, doi: 10.1021/bm 400752k.
[110] U. D. Hemraz, K. A. Campbell, J. S. Burdick, K. Ckless, Y. Boluk, and R. Sunasee, “Cationic poly(2-aminoethylmethacrylate) and polyN-(2-aminoethylmethacrylamide) modified cellulose nanocrystals: Synthesis, characterization, and cytotoxicity,” Biomacromolecules, vol. 16, no. 1, pp. 319–325, 2015, doi: 10.1021/bm501516r.
[111] L. Hou, J. Fang, W. Wang, Z. Xie, D. Dong, and N. Zhang, “Indocyanine green-functionalized bottle brushes of poly(2-oxazoline) on cellulose nanocrystals for photothermal cancer therapy,” Journal of Material Chemistry B, vol. 5, no. 18, pp. 3348–3354, 2017, doi: 10.1039/c7tb00812k.
[112] C. R. Bauli, G. F. Lima, A. G. de Souza, R. R. Ferreira, and D. S. Rosa, “Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing,” Colloids Surfaces A Physicochemical Engineering Aspects, vol. 623, 2021, Art. no. 126771, doi: 10.1016/j.colsurfa.2021.126771.
[113] H. Shaghaleh, Y. Alhaj Hamoud, X. Xu, S. Wang, and H. Liu, “A pH-responsive/sustained release nitrogen fertilizer hydrogel based on aminated cellulose nanofiber/cationic copolymer for application in irrigated neutral soils,” Journal of Cleaner Production, vol. 368, 2022, Art. no. 133098, doi: 10.1016/j.jclepro.2022.133098.
[114] L. Guo et al., “Synthesis of bio-based MIL-100(Fe)@CNF-SA composite hydrogel and its application in slow-release N-fertilizer,” Journal of Cleaner Production, vol. 324, 2021, Art. no. 129274, doi: 10.1016/j.jclepro.2021. 129274.
[115] I. Kassem et al., “Cellulose nanocrystals-filled poly (vinyl alcohol) nanocomposites as waterborne coating materials of NPK fertilizer with slow release and water retention properties,” International Journal of Biological Macromolecules, vol. 189, pp. 1029–1042, 2021, doi: 10.1016/j.ijbiomac. 2021.08.093.
[116] C. Winarti, M. Kurniati, A. B. Arif, K. S. Sasmitaloka, and Nurfadila, “Cellulose-based nanohydrogel from corncob with chemical crosslinking methods,” IOP Conference Series: Earth and Environmental Sciences, vol. 209, vol. 209, no. 1, pp. 1–9, 2018, doi: 10.1088/1755-1315/209/1/012043.
[117] C. Winarti, K. S. Sasmitaloka, and A. B. Arif, “Effect of NPK fertilizer incorporation on the characteristics of Nanocellulose-based hydrogel,” IOP Conference Series: Earth and Environmental Sciences, vol. 209, vol. 648, no. 1, pp. 1–8, 2021, doi: 10.1088/1755-1315/648/1/012180.
[118] E. A. Priya, Jha, S. Sarkar, and P. K. Maji, “A urea-loaded hydrogel comprising of cellulose nanofibers and carboxymethyl cellulose: An effective slow-release fertilizer,” Journal of Cleaner Production, vol. 434, 2024, Art. no. 140215, doi: 10.1016/j.jclepro.2023.140215.
[119] N. Sharma, M. Kochar, B. J. Allardyce, R. Rajkhowa, and R. Agrawal, “Biodegradation of N-fertilizer loaded on cellulose nanofibres to assess their potential use as a controlled-release fertilizer,” Journal of Materials Science, vol. 58, no. 47. pp. 17859–17872, 2023, doi: 10.1007/s10853-023-09134-7.
[120] D. Gomez-Maldonado et al., “Modifying soluble NPK release with hydrophobized nanocellulose-based hydrogels for sustainable enhanced efficiency fertilizers,” Environmental Science: Nano, vol. 11, no. 2, pp. 529–545, 2023, doi: 10.1039/d3en00306j.
[121] B. E. Channab, A. El Idrissi, Y. Essamlali, and M. Zahouily, “Nanocellulose: Structure, modification, biodegradation and applications in agriculture as slow/controlled release fertilizer, superabsorbent, and crop protection: A review,” Journal of Environmental Management, vol. 352, 2024, Art. no. 119928, doi: 10.1016/j.jenvman.2023.119928.
[122] T. V. Patil, D. K. Patel, S. D. Dutta, K. Ganguly, T. S. Santra, and K. T. Lim, “Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications,” Bioactive Materials, vol. 9, pp. 566–589, 2022, doi: 10.1016/j.bioactmat.2021.07.006.
[123] C. Moser, G. Henriksson, and M. E. Lindström, “Specific surface area increase during cellulose nanofiber manufacturing related to energy input,” BioResources, vol. 11, no. 3, pp. 7124–7132, 2016, doi: 10.15376/biores.11.3.7124-7132.
[124] M. S. Haydar, D. Ghosh, and S. Roy, “Slow and controlled release nanofertilizers as an efficient tool for sustainable agriculture: Recent understanding and concerns,” Plant Nano Biology, vol. 7, 2024, Art. no. 100058, doi: 10.1016/j.plana.2024.100058.
[125] P. Negi et al., “Coated controlled-release fertilizers: potential solution for sustainable agriculture,” Nature Environment and Pollution Technology, vol. 21, no. 4, pp. 1739–1745, 2022, doi: 10.46488/NEPT.2022.v21i04. 028.
[126] N. Raghav, N. Mor, R. D. Gupta, R. Kaur, M. R. Sharma, and P. Arya, “Some cetyltrimethylammonium bromide modified polysaccharide supports as sustained release systems for curcumin,” International Journal of Biological Macromolecules, vol. 154, pp. 361–370, 2020, doi: 10.1016/j.ijbiomac.2020. 02.317.
[127] Y. M. Kim et al., “Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery,” Carbohydrate Polymers, vol. 247, 2020, Art. no. 116684, doi: 10.1016/j.carbpol.2020. 116684.
[128] Z. Mohammadbagheri, A. Rahmati, and P. Hoshyarmanesh, “Synthesis of a novel superabsorbent with slow-release urea fertilizer using modified cellulose as a grafting agent and flexible copolymer,” International Journal of Biological Macromolecules, vol. 182, pp. 1893–1905, 2021, doi: 10.1016/j.ijbiomac.2021.05.191.
[129] A. Wozniak, K. Kuligowski, L. Swierczek, and A. Cenian, “Review of lignocellulosic biomass pretreatment using physical, thermal and chemical methods for higher yields in bioethanol production,” Sustainability, vol. 17, 2025, Art. no. 287, doi: 10.3390/su17010287.
[130] M. N. F. Norrrahim, R. A. Ilyas, N. M. Nurazzi, M. S. A. Rani, M. S. N. Atikah, and S. S. Shazleen, “Chemical pretreatment of lignocellulosic biomass for the production of bioproducts: An overview,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 588–605, 2021, doi: 10.14416/j.asep.2021.07. 004.
[131] D. A. Trirahayu, R. P. Putra, A. S. Hidayat, M. I. Perdana, and E. Safitri, “Synthesis and performance evaluation of cellulose-based slow-release fertilizer: A review,” Kovalen: Jurnal Riset Kimia, vol. 8, no. 1, pp. 1–16, 2022, doi: 10.22487/kovalen.2022.v8.i1.15731.
[132] I. Kassem et al., “Biodegradable all-cellulose composite hydrogel as eco-friendly and efficient coating material for slow-release MAP fertilizer,” Progress in Organic Coatings, vol. 162, 2022, Art. no. 106575, doi: 10.1016/j.porgcoat.2021.106575.
[133] A. Rashidzadeh, A. Olad, and A. Reyhanitabar, “Hydrogel/clinoptilolite nanocomposite-coated fertilizer: Swelling, water-retention and slow-release fertilizer properties,” Polymer Bulletin, vol. 72, no. 10, pp. 2667–2684, 2015, doi: 10.1007/s00289-015-1428-y.
[134] R. P. Putra, D. A. Trirahayu, K. H. Burhan, F. Ichsan, and M. Purwasasmita, “Hydrodynamics of fluid flow in fixed-beds composed of sand particles and hollow fiber membrane pipes,” Fluida, vol. 13, no. 1, pp. 9–16, 2020, doi: 10.35313/fluida.v13i1.2269.
[135] R. P. Putra, D. A. Trirahayu, K. H. Burhan, F. Ichsan, and M. Purwasasmita, “Characteristics of fluid flow in fixed-bed reactor models composed of spherical and porous tubular milli-sized particles,” in AIP Conference Proceedings, 2021, vol. 2403, doi: 10.1063/5.0070681.
[136] K. Dhali, M. Ghasemlou, F. Daver, P. Cass, and B. Adhikari, “A review of nanocellulose as a new material towards environmental sustainability,” Science of the Total Environment, vol. 775, 2021, Art. no. 145871, doi: 10.1016/j.scitotenv.2021.145871.
[137] C. W. Purnomo and H. Saputra, “Chapter 6 - Manufacturing of slow and controlled release fertilizer,” in Controlled Release Fertilizers for Sustainable Agriculture, Cambridge, MA: Elsevier Academic Press, 2021, pp. 95–110.
[138] Nanografi. “Cellulose nanocrystal (nanocrystalline cellulose, CNC).” shop.nanografi.com. Accessed: Nov. 25, 2023. [Online.] Available: https://shop.nanografi. com/popular-products/cellulose-nanocrystal-nanocrystalline-cellulose-cnc/
[139] Inkwood Research. “Global nano cellulose market forecast 2021–2028.” inkwoodresearch.com. Accessed: Nov. 25, 2023. [Online.] Available: https://www.inkwoodresearch.com/reports/nano-cellulose-market/#:~:text=Inkwood
[140] E. Lizundia, D. Puglia, T. D. Nguyen, and I. Armentano, “Cellulose nanocrystal based multifunctional nanohybrids,” Progress in Materials Science, vol. 112. 2020, Art. no. 100668, doi: 10.1016/j.pmatsci.2020.100668.
[141] K. Kekäläinen, M. Illikainen, and J. Niinimäki, “Gradual disintegration procedure in optimization of chemi-mechanical treatment for micro- and nanocellulose production,” in TAPPI International Conference on Nanotechnology for Renewable Materials 2012, 2012, pp. 222–244.
[142] A. Vazquez, M. L. Foresti, J. I. Moran, and V. P. Cyras, “Extraction and production of cellulose nanofibers,” in Handbook of Polymer Nanocomposites. Processing, Performance and Application: Volume C: Polymer Nanocomposites of Cellulose Nanoparticles, London, UK: Springer, 2015, pp. 81–118.
[143] S. R. Anderson, D. Esposito, W. Gillette, J. Y. Zhu, U. Baxa, and S. E. McNeil, “Enzymatic preparation of nanocrystalline and microcrystalline cellulose,” Tappi Journal, vol. 13, no. 5, pp. 35–42, 2014, doi: 10.32964/tj13.5.35.
[144] D. Klemm et al., “Nanocelluloses: A new family of nature-based materials,” Angewandte Chemie - International Edition, vol. 50, no. 24. pp. 5438–5466, 2011, doi: 10.1002/anie. 201001273.
[145] M. Ankerfors, “Microfibrillated cellulose: Energy ‐ efficient preparation techniques and applications in paper,” M.S. thesis, Business Unit Material Processes, Innventia AB, and Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden, 2012.
[146] I. Siró and D. Plackett, “Microfibrillated cellulose and new nanocomposite materials: A review,” Cellulose, vol. 17, no. 3. pp. 459–494, 2010, doi: 10.1007/s10570-010-9405-y.DOI: 10.14416/j.asep.2026.02.003
Refbacks
- There are currently no refbacks.
Applied Science and Engineering Progress







