Evaluating Urban Foliage for Bioindicator Potential through Pollution Tolerance Traits and Particulate Matter Accumulation
Abstract
Keywords
[1] E. von Schneidemesser, K. Steinmar, E. C. Weatherhead, B. Bonn, H. Gerwig, and J. Quedenau, “Air pollution at human scales in an urban environment: Impact of local environment and vehicles on particle number concentrations,” Science of The Total Environment, vol. 688, pp. 691–700, Oct. 2019, doi: 10.1016/j.scitotenv. 2019.06.309.
[2] S. Shahrukh, S. Huda, M. Moniruzzaman, M. Islam, M. Shaikh, and M. Hossain, “Removal of airborne particulate matter by evergreen tree species in Dhaka, Bangladesh,” Environmental Pollution, vol. 363, p. 125194, Dec. 2024, doi: 10.1016/j.cpb.2023.100296.
[3] J. S. Apte, M. Brauer, A. J. Cohen, M. Ezzati, and C. A. Pope, “Ambient PM2.5 reduces global and regional life expectancy,” Environmental Science and Technology Letters, vol. 5, no. 9, pp. 546–551, Sep. 2018, doi: 10.1021/acs.estlett. 8b00360.
[4] J. Chen and G. Hoek, “Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis,” Environment International, vol. 143, p. 105974, Oct. 2020, doi: 10.1016/j.envint.2020.105974.
[5] R. Fuller and P. J. Landrigan, “Pollution and health: A progress update,” Lancet Planet Health, vol. 6, no. 6, pp. 535–547, Jun. 2022, doi:10.1016/ S2542-5196(22)00090-0.
[6] J. S. Apte and C. Manchanda, “High-resolution urban air pollution mapping,” Science, vol. 385, no. 6707, pp. 380–385, Jul. 2024, doi: 10.1126/ science.adq3678.
[7] Y. Kang, L. Aye, T. D. Ngo, and J. Zhou, “Performance evaluation of low-cost air quality sensors: A review,” Science of the Total Environment, vol. 818, Apr. 2022, doi: 10.1016/ j.scitotenv.2021.151769.
[8] Researchnester. “Air Quality Monitoring System Market size to hit $26.04 billion by 2037 | 10.3% CAGR Forecast.” researchnester.com. Accessed: Jul. 19, 2025. [Online.] Available: https://www.researchnester.com/reports/air-quality-monitoring-system-market/4667
[9] Mordorintelligence. “Air Quality Monitoring Market Size, Report, Share & Industry Report 2030.” mordorintelligence.com. Accessed: Jul. 19, 2025. [Online]. Available: https://www.mordorintelligence.com/industry-reports/air-quality-monitoring-market
[10] S. Jain, R. Gardner-Frolick, N. Martinussen, D. Jackson, A. Giang, and N. Zimmerman, “Identification of neighbourhood hotspots via the Cumulative Hazard Index: Results from a community-partnered low-cost sensor deployment,” Geohealth, vol. 8, no. 2, Feb. 2024, Art. no. 000935, doi: 10.1029/2023gh 000935.
[11] A. M. Graham et al., “Updated smoke exposure estimate for indonesian peatland fires using a network of low-cost PM2.5 sensors and a regional air quality model,” Geohealth, vol. 8, no. 11, Nov. 2024, Art. no. 001125, doi: 10.1029/2024gh001125.
[12] S. Cen, “Biological monitoring of air pollutants and its influence on human beings,” The Open Biomedical Engineering Journal, vol. 9, pp. 219–223, Oct. 2015, doi: 10.2174/18741207015 09010219.
[13] K. Dzierzanowski, R. Popek, H. Gawrońska, A. Saebø, and S. W. Gawroński, “Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species,” International Journal of Phytoremediation, vol. 13, no. 10, pp. 1037–1046, Nov. 2011, doi: 10.1080/15226514.2011. 552929.
[14] K. V. Abhijith et al., “Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review,” Atmospheric Environment, vol. 162, pp. 71–86, Aug. 2017, doi: 10.1016/j.atmosenv. 2017.05.014.
[15] K. Corada, H. Woodward, H. Alaraj, C. M. Collins, and A. de Nazelle, “A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas,” Environmental Pollution, vol. 269, Jan. 2021, Art. no. 116104, doi: 10.1016/ j.envpol.2020.116104.
[16] R. Pace et al., “Comparing i-tree eco estimates of particulate matter deposition with leaf and canopy measurements in an urban mediterranean holm oak forest,” Environmental Science and Technology, vol. 55, pp. 6613–6622, May 2021, doi: 10.1021/acs.est.0c07679.
[17] A. Mohtadi and M. H. Manesh, “Assessment of resistance and biochemical responses of tree species as a biomonitor of heavy metals pollution in an urban-industrial setting (Yasouj, Iran),” Chemosphere, vol. 378, Jun. 2025, Art. no. 144402, doi: 10.1016/j.chemosphere.2025.144402.
[18] R. Ezhilarasi and S. Joseph, “Impact of air pollution and leaf dust deposition on biochemical parameters and air pollution tolerance index (APTI) of some roadside plants” International Journal of Botany Studies, vol. 4, no. 2, pp. 110–114, Feb. 2019, doi: 10.37896/YMER21.05/E9.
[19] J. V. Rasanen et al., “Effects of species-specific leaf characteristics and reduced water availability on fine particle capture efficiency of trees,” Environmental Pollution, vol. 183, pp. 64–70, Dec. 2013, doi: 10.1016/j.envpol.2013.05.015.
[20] A. Przybysz, A. Sæbø, H. M. Hanslin, and S. W. Gawroński, “Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time,” Science of The Total Environment, vol. 481, no. 1, pp. 360–369, May 2014, doi: 10.1016/ j.scitotenv.2014.02.072.
[21] M. Tarish et al., “Plant tissues as biomonitoring tools for environmental contaminants,” International Journal of Plant Biology, vol. 15, no. 2, pp. 375–396, Apr. 2024, doi: 10.3390/ ijpb15020030.
[22] R. Popek, A. Łukowski, and M. Grabowski, “Influence of particulate matter accumulation on photosynthetic apparatus of physocarpus opulifolius and sorbaria sorbifolia,” Polish Journal of Environmental Studies, vol. 27, no. 5, pp. 2391–2396, May 2018, doi: 10.15244/pjoes/ 78626.
[23] H. T. Bui, U. Odsuren, S. Y. Kim, and B. J. Park, “Particulate matter accumulation and leaf traits of ten woody species growing with different air pollution conditions in Cheongju City, South Korea,” Atmosphere, vol. 13, no. 9, Aug. 2022, Art. no. 1351, doi: 10.3390/atmos13091351.
[24] A. Long et al., “Effects of low pH on photosynthesis, related physiological parameters, and nutrient profiles of citrus,” Frontiers in Plant Science, vol. 8, Feb. 2017, Art. no. 238833, doi: 10.3389/fpls.2017.00185.
[25] V. É. Molnár, E. Simon, B. Tóthmérész, S. Ninsawat, and S. Szabó, “Air pollution induced vegetation stress – The air pollution tolerance index as a quick tool for city health evaluation,” Ecological Indicators, vol. 113, Jun. 2020, Art. no. 106234, doi: 10.1016/j.ecolind.2020.106234.
[26] C. Sahu, S. Basti, and S. K. Sahu, “Air pollution tolerance index (APTI) and expected performance index (EPI) of trees in Sambalpur town of India,” SN Applied Sciences, vol. 2, no. 8, pp. 1–14, Aug. 2020, doi: 10.1007/s42452-020-3120-6.
[27] R. Yadav and P. Pandey, “Assessment of air pollution tolerance index (APTI) and anticipated performance index (API) of roadside plants for the development of greenbelt in urban area of Bathinda City, Punjab, India,” Bulletin of Environmental Contamination and Toxicology, vol. 105, no. 6, pp. 906–914, Dec. 2020, doi: 10.1007/s00128-020-03027-0.
[28] S. K. Bharti, A. Trivedi, and N. Kumar, “Air pollution tolerance index of plants growing near an industrial site,” Urban Climate, vol. 24, pp. 820–829, Jun. 2018, doi: 10.1016/j.uclim.2017. 10.007.
[29] M. Steinparzer, J. Schaubmayr, D. L. Godbold, and B. Rewald, “Particulate matter accumulation by tree foliage is driven by leaf habit types, urbanization, and pollution levels,” Environmental Pollution, vol. 335, Oct. 2023, Art. no. 122289, doi: 10.1016/j.envpol.2023. 122289.
[30] L. Fusaro et al., “Urban trees for biomonitoring atmospheric particulate matter: An integrated approach combining plant functional traits, magnetic and chemical properties,” Ecological Indicators, vol. 126, Jul. 2021, Art. no. 107707, doi: 10.1016/j.ecolind.2021.107707.
[31] R. J. Leonard, C. McArthur, and D. F. Hochuli, “Particulate matter deposition on roadside plants and the importance of leaf trait combinations,” Urban For Urban Green, vol. 20, pp. 249–253, Dec. 2016, doi: 10.1016/j.ufug.2016.09.008.
[32] J. Park, H. T. Bui, E. Lee, H. S. Lim, H. B. Lim, and B. J. Park, “Accumulation of particulate matter, heavy metals, and air pollution tolerance index of 10 species of urban forest plants,” Water Air Soil Pollution, vol. 236, no. 4, pp. 1–17, Apr. 2025, doi: 10.1007/s11270-025-07875-6.
[33] Urbanemissions. “Air Quality Analysis for Hyderabad, India - UrbanEmissions.Info.” urbanemissions.info. Accessed: Jun. 22, 2025. [Online.] Available: https://urbanemissions.info/ india-apna/hyderabad-india
[34] AQI. “Hyderabad Air Quality Index (AQI) : Real-Time Air Pollution.” aqi.in. Accessed: Jun. 22, 2025. [Online.] Available: https://www. aqi.in/dashboard/india/telangana/hyderabad
[35] CPCB. “Central Control Room for Air Quality Management - All India.” airquality.cpcb.gov.in. Accessed: Oct. 20, 2025. [Online]. Available: https://airquality.cpcb.gov.in/ccr/#/caaqm-dashboard-all/caaqm-landing
[36] Airpollutionapi. “Gandi Maisamma, Hyderabad, Telangana 500043, India Air Quality Index (AQI) & Pollution Report.” airpollutionapi.com. Accessed: Jun. 22, 2025. [Online]. Available: https://www.airpollutionapi.com/aqi/india/telangana/gandi-maisamma
[37] S. K. Singh, D. N. Rao, M. Agrawal, J. Pandey, and D. Naryan, “Air pollution tolerance index of plants,” Journal of Environmental Management, vol. 32, no. 1, pp. 45–55, Jan. 1991, doi: 10.1016/S0301-4797(05)80080-5.
[38] N. C. Turner, “Techniques and experimental approaches for the measurement of plant water status,” Plant and Soil, vol. 58, no. 1–3, pp. 339–366, Feb. 1981, doi: 10.1007/BF02180062
[39] H. K. Lichtenthaler, “Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes,” Methods in Enzymology, vol. 148, pp. 350–382, Jan. 1987, doi: 10.1016/0076-6879(87)48036-1.
[40] B. Dinesh, B. Yadav, R. D. Reddy, A. S. Padma, and M. K. Sukumaran, “Determination of ascorbic acid content in some indian spices,” International Journal of Current Microbiology and Applied Sciences, vol. 4, no. 8, pp. 864–868, Aug. 2015.
[41] A. Roy, T. Bhattacharya, and M. Kumari, “Air pollution tolerance, metal accumulation and dust capturing capacity of common tropical trees in commercial and industrial sites,” Science of The Total Environment, vol. 722, Jun. 2020, Art. no. 137622, doi: 10.1016/j.scitotenv.2020.137622.
[42] S. K. Prajapati and B. D. Tripathi, “Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulate pollution,” Journal of Environmental Quality, vol. 37, no. 3, pp. 865–870, May 2008, doi:10.2134/jeq2006.0511.
[43] OriginLab. “OriginPro - Data Analysis and Graphing Software.” originlab.com. Accessed: Oct. 21, 2025. [Online]. Available: https://www.originlab.com/
[44] F. Shao et al., “Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China,” Science of the Total Environment, vol. 652, pp. 939–951, Feb. 2019, doi: 10.1016/ j.scitotenv.2018.10.182.
[45] S. Muhammad, K. Wuyts, and R. Samson, “Atmospheric net particle accumulation on 96 plant species with contrasting morphological and anatomical leaf characteristics in a common garden experiment,” Atmospheric Environment, vol. 202, pp. 328–344, Apr. 2019, doi: 10.1016/j.atmosenv.2019.01.015.
[46] X. Xu, J. Xia, Y. Gao, and W. Zheng, “Additional focus on particulate matter wash-off events from leaves is required: A review of studies of urban plants used to reduce airborne particulate matter pollution,” Urban Forestry & Urban Greening, vol. 48, Feb. 2020, Art. no. 126559, doi: 10.1016/j.ufug.2019.126559.
[47] J. Park, H. T. Bui, E. Lee, H. S. Lim, H. B. Lim, and B. J. Park, “Accumulation of particulate matter, heavy metals, and air pollution tolerance index of 10 species of urban forest plants,” Water Air Soil Pollution, vol. 236, no. 4, pp. 1–17, Apr. 2025, doi: 10.1007/s11270-025-07875-6.
[48] S. Kaur et al., “Deposition of particulate matter on roadside plant leaves in urban environment (New Delhi): Implications to plant health,” Aerosol Science and Engineering, pp. 1–12, Jun. 2025, doi: 10.1007/s41810-025-00318-z.
[49] W. Zhang, Z. Zhang, H. Meng, and T. Zhang, “How does leaf surface micromorphology of different trees impact their ability to capture particulate matter?,” Forests, vol. 9, no. 11, Aug. 2018, Art. no. 681, doi: 10.3390/f9110681.
[50] S. Das and P. Prasad, “Particulate matter capturing ability of some plant species: implication for phytoremediation of particulate pollution around Rourkela Steel Plant, Rourkela, India”, Nature Environment and Pollution Technology, vol. 11, no. 4, pp. 657–665, Dec. 2012.
[51] G. Yasin et al., “Adaptive responses of trees to industrial pollution: Modulation of leaf anatomical, physio-biochemical, and heavy metal accumulation traits in urban biotopes,” Environmental Monitoring and Assessment, vol. 197, no. 8, Aug. 2025, Art. no. 882, doi: 10.1007/s10661-025-14333-7.
[52] D. Nandini, B. S. R. Kumar, and S.R. Amaraneni, “Estimation of mineral nutrient concentration in Datura Metel and Datura Innoxia species,” Paripex - Indian Journal of Research, vol. 5, no. 9, pp. 181–183, Sep. 2016.
[53] K. Achakzai et al., “Air pollution tolerance index of plants around brick kilns in Rawalpindi, Pakistan,” Journal of Environmental Management, vol. 190, pp. 252–258, Apr. 2017, doi: 10.1016/j.jenvman.2016.12.072.
[54] A. N. Socha, M. K. Ciupa, M. Trzęsicki, and G. Barczyk, “Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes,” Chemosphere, vol. 183, pp. 471–482, Sep. 2017, doi: 10.1016/ j.chemosphere.2017.05.128.
[55] U. D. Randhi, M. A. Reddy, “Evaluation of tolerant plant species in urban environment: A case study from Hyderabad, India.” Universal Journal of Environmental Research & Technology, vol. 2, no. 4, pp. 300–304. Aug. 2012.
[56] U. Ejaz et al., “Detoxifying the heavy metals: A multipronged study of tolerance strategies against heavy metals toxicity in plants,” Frontiers in Plant Science, vol. 14, May 2023, Art. no. 1154571, doi: 10.3389/fpls.2023.1154571.
[57] S. Giri, D. Shrivastava, K. Deshmukh, and P. Dubey, “Effect of air pollution on chlorophyll content of leaves,” Current Agriculture Research Journal, vol. 1, no. 2, pp. 93–98, Dec. 2013, doi: 10.12944/CARJ.1.2.04.
[58] K. Dzierzanowski, R. Popek, H. Gawrońska, A. Saebø, and S. W. Gawroński, “Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species,” International Journal of Phytoremediation, vol. 13, no. 10, pp. 1037–1046, Nov. 2011, doi: 10.1080/15226514.2011.552929.
[59] J. Pandit and A. K. Sharma, “A review of effects of air pollution on physical and biochemical characteristics of plants,” International Journal of Chemical Studies, vol. 8, no. 3, pp. 1684–1688, 2020, doi: 10.22271/chemi.2020.v8.i3w.9442.
[60] D. P. Tripathi and A. K. Nema, “Seasonal variation of biochemical parameters and air pollution tolerance index (APTI) of selected plant species in Delhi city, and detailed meta-analysis from Indian metropolitan cities,” Atmospheric Environment, vol. 309, 2023, Art. no. 119862, doi: 10.1016/j.atmosenv.2023.119862.
[61] L. Fusaro et al., “Urban trees for biomonitoring atmospheric particulate matter: An integrated approach combining plant functional traits, magnetic and chemical properties,” Ecological Indicators, vol. 126, Jul. 2021, Art. no. 107707, doi: 10.1016/j.ecolind.2021.107707.
[62] S. J. Jyothi and D. S. Jaya, “Evaluation of air pollution tolerance index of selected plant species along roadsides in Thiruvananthapuram, Kerala,” Journal of Environmental Biology, vol 31. pp. 379–386, May 2010.
[63] H. T. Bui, U. Odsuren, S. Y. Kim, and B. J. Park, “Particulate matter accumulation and leaf traits of ten woody species growing with different air pollution conditions in Cheongju City, South Korea,” Atmosphere vol. 13, no. 9, Aug. 2022, Art. no. 351, doi: 10.3390/atmos13091351.
[64] P. Agbaire, E. E.-J. of A. S. “Air pollution tolerance indices (APTI) of some plants around Otorogun gas plant in Delta State, Nigeria,” Journal of Applied Sciences and Environmental Management, vol. 13, no. 1, pp. 11–14, Jun. 2010, doi: 10.4314/jasem.v13i1.55251.
[65] S. Shahrukh et al., “Air pollution tolerance, anticipated performance, and metal accumulation indices of four evergreen tree species in Dhaka, Bangladesh,” Current Plant Biology, vol. 35–36, Sep. 2023, Art. no. 100296, doi: 10.1016/j.cpb.2023.100296.
[66] M. Hariram, R. Sahu, and S. P. Elumalai, “Impact assessment of atmospheric dust on foliage pigments and pollution resistances of plants grown nearby coal based thermal power plants,” Archives of Environmental Contamination and Toxicology, vol. 74, no. 1, pp. 56–70, Jan. 2018, doi: 10.1007/s00244-017-0446-1.
[67] A. S. Shannigrahi, T. Fukushima, and R. C. Sharma, “Anticipated air pollution tolerance of some plant species considered for green belt development in and around an industrial/urban area in India: an overview,” International Journal of Environmental Studies, vol. 61, no. 2, pp. 125–137, 2004, doi: 10.1080/0020723032000163137.
[68] P. K. Rai and L. L. S. Panda, “Dust capturing potential and air pollution tolerance index (APTI) of some roadside tree vegetation in Aizawl, Mizoram, India: An Indo-Burma hot spot region,” Air Quality, Atmosphere & Health, vol. 7, no. 1, pp. 93–101, Nov. 2014, doi: 10.1007/s11869-013-0217-8.
[69] M. S. Akhtar, S. Ali, and W. Zaman, “Innovative adsorbents for pollutant removal: Exploring the latest research and applications,” Molecules, vol. 29, no. 18, Sep. 2024, Art. no. 4317, doi: 10.3390/molecules29184317.
[70] X. Lyu, L. Chang, Z. Lu, and J. Li, “The ability of three climbing plant species to capture particulate matter and their physiological responses at different environmental sampling sites,” Frontiers in Plant Science, vol. 10, Jan. 2023, Art. no. 1084902, doi: 10.3389/fenvs. 2022.1084902.
DOI: 10.14416/j.asep.2026.02.007
Refbacks
- There are currently no refbacks.
Applied Science and Engineering Progress







