Sample size Determination for Structural Equation Modeling (SEM)
การกำหนดขนาดตัวอย่างสำหรับการวิเคราะห์ตัวแบบสมการโครงสร้าง
Abstract
ขนาดตัวอย่างที่ใช้เพื่อทำการวิจัยโดยวิธีการวิเคราะห์ตัวแบบสมการโครงสร้างเป็นปัญหาที่นักวิจัยจำนวนมากไม่แน่ใจว่าควรกำหนดไว้เท่าไรจึงจะถูกต้องและ/หรือเหมาะสม ควรเน้นที่การใช้ตัวอย่างขนาดใหญ่คือมีจำนวนมากเพื่อความมั่นใจในผลการวิเคราะห์/วิจัย หรือว่าควรน้อยลงได้ตามเหตุผลอื่นๆ การศึกษาโดยการสำรวจเอกสารพบว่าวิธีกำหนดขนาดตัวอย่างสำหรับการวิเคราะห์ตัวแบบสมการโครงสร้างมีได้หลายวิธีหลากหลายแตกต่างกันไปตามการพัฒนาสูตรด้วยกฎเกณฑ์ทางสถิติที่ผิดแผกรวมถึงกฎอย่างง่าย ทำให้ได้รับขนาดตัวอย่างที่เหมะสมแตกต่างกันไป มีทั้งขนาดตัวอย่างที่ใหญ่มากและขนาดตัวอย่างที่เล็กมาก จากผลการเปรียบเทียบวิธีกำหนดขนาดตัวอย่างจำนวน 11 วิธีสามารถสรุปได้ว่าขนาดตัวอย่างที่เพียงพอสำหรับการวิเคราะห์ตัวแบบสมการโครงสร้างคือควรมีประมาณ 200 แต่อาจเล็กกว่านี้หรือใหญ่กว่านี้ได้ขึ้นอยู่กับองค์ประกอบของตัวแบบสมการโครงสร้างว่าซับซ้อนมากน้อยเพียงใดและประชากรมีขนาดเล็กหรือใหญ่
Sample size was the problem that always raised to question of what size is correct or suitable for most researchers of structural equation analysis (SEM). Whether more subjects for high confidence in the accuracy of analysis/research or lesser subjects according to some contexts is plausible? Literature reviews show that sample size for SEM could be determined in a varietyof ways depending upon different statistical formulas and rules including rules of thumbs. From a comparative study of sample size determination among 11 available formulas and rules, several plausible sizes are found to be numbers that range from large to small. In conclusion, a sufficient sample size for SEM is 200 but more or less than 200 is possible subject to complications of the SEM model itself and population size constrained.
Keywords
[1] T. W. Anderson, H. Rubin, Statistical inference in factor analysis, The Third Berkeley Symposium on Mathematical Statistics and Probability, Proceedings, 1956, 111-150.
[2] K.A. Bollen, Structural equations with latent variables, John Wiley & Sons, NY, USA, 1989.
[3] A. Boomsma, Non-convergence, improper solutions, and starting values in lisrel maximum likelihood estimation, Psychometrika, 1985, 50(2), 229–242.
[4] J.C. Nunnally, Psychometric theory, McGraw-Hill, NY, USA, 1967.
[5] P. Bentler, EQS structural program manual, CA. BMPD statistical software, LA, USA, 1989.
[6] H.W. Marsh, K.T. Hau, J.R. Balla, and D. Grayson, Is more ever too much? The number of ondicators per factor in confirmatory factor analysis, Multivariate Behavioral Research, 1998, 33, 181-220.
[7] A. Boomsma and J.J. Hoogland, The robustness of LISREL modeling revisited, Structural equation modeling: Present and future: A festschrift in honor of Karl Jöreskog, Scientific Software International Inc, Lincolnwood, IL, USA, 2001, 1-25.
[8] K.G. Joreskog and D. Sorbom, Lisrel7-A guide to program and applications, 2nd ed., SPSS, IL, USA, 1988.
[9] M. Piriyakal, Analytical techniques for Second Order SEM, Journal of Modern Management Science, 6(1), 97-111. (in Thai)
[10] J. Koran, Preliminary proactive sample size determination for confirmatory factor analysis models, Measurement and Evaluation in Counseling and Development, 2016, 49(4), 296-308.
[11] J.C. Westland, Lower bounds on sample size in structural equation modeling, Electronic Commerce Research and Applications, 2010, 9(6), 476-487.
[12] E.J. Wolf, K.M. Harrington, S.L. Clark, and M.W. Miller, Sample size requirements for structural equation models: An evaluation of power, bias, and solution propriety, Educational and Psychological Measurement, 2013, 76(6), 913–934.
[13] N. Koch and P. Hadaya, Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods, Information Systems Journal, 2018, 28(1), 227–261.
[14] P.S. Petraitis, A.E. Dunham and P.H. Niewiarowski, Inferring multiple causality: The limitations of path analysis, Functional Ecology, 1996, 10(4), 421-431.
DOI: 10.14416/10.14416/j.ind.tech.2021.12.007
Refbacks
- There are currently no refbacks.