การศึกษาผลกระทบของปัจจัยการอัดรีดต่อคุณสมบัติเชิงกลของเส้นใยพลาสติก ABS รีไซเคิล โดยใช้การออกแบบการทดลอง
A Study on the Effects of Extrusion Factors on the Mechanical Properties of Recycled ABS Plastic Fibers Using Experimental Design
Abstract
งานวิจัยนี้มุ่งเน้นการปรับปรุงสมบัติของเส้นใยพลาสติก ABS รีไซเคิลสำหรับการพิมพ์สามมิติ เพื่อแก้ไขปัญหาการสะสมของเศษพลาสติกที่ส่งผลกระทบต่อสภาพแวดล้อมและลดต้นทุนการจัดการขยะ โดยศึกษาผลกระทบของอัตราส่วนการเติมเศษพลาสติก ABS รีไซเคิลและความเร็วของสกรูในกระบวนการอัดรีดต่อค่าความทนทานต่อแรงดึงสูงสุด (UTS) และค่าความสามารถในการยืดตัวของวัสดุ (%El) ผ่านการออกแบบการทดลองพื้นผิวตอบสนองแบบส่วนประสมกลาง (CCD) ผลการทดลองพบว่า อัตราส่วนการเติมเศษพลาสติก ABS รีไซเคิล 650 กรัม และความเร็วของสกรูในกระบวนการอัดรีด 100 รอบต่อนาที ส่งผลให้ค่าความทนทานต่อแรงดึงสูงสุดเฉลี่ย 33.334 เมกะปาสคาล ลดลง 14.91 เปอร์เซ็นต์ และค่าความสามารถในการยืดตัวของวัสดุเฉลี่ย 3.012 เปอร์เซ็นต์ ลดลง 10.89 เปอร์เซ็นต์ ลักษณะเส้นใยที่ผลิตได้มีความสม่ำเสมอที่ 1.75 ±0.15 มิลลิเมตร เมื่อเทียบกับวัสดุใหม่ และเมื่อนำมาทดสอบการพิมพ์ด้วยเครื่องพิมพ์ระบบชุดดันเส้นแบบติดหัวฉีดที่ติดตั้งชุดดันเส้นเฟืองขับแบบสองตัวพบว่า ชิ้นงานจากเส้นใยพลาสติก ABS รีไซเคิลมีคุณภาพผิว รูปร่างและความสวยด้อยกว่าเส้นใยพลาสติก ABS ใหม่ แต่การใช้วัสดุรีไซเคิลสามารถลดต้นทุนวัตถุดิบได้ 34 .41 เปอร์เซ็นต์ (ประหยัดได้ 55.75 บาทต่อกิโลกรัม) และลดการปล่อยาร์บอนไดออกไซด์ลง 61.94 เปอร์เซ็นต์ (1.1799 kg CO2e) ได้อย่างมีนัยสำคัญเมื่อเทียบกับเม็ดพลาสติกใหม่
This study focuses on improving the properties of recycled ABS plastic filaments for 3D printing to address the issue of plastic waste accumulation that affects the environment and to reduce waste management costs. The research examines the effects of the ratio of added recycled ABS plastic scraps and the screw speed in the extrusion process on the ultimate tensile strength and the material's elongation capability. A Central Composite Design (CCD) under the Response Surface Methodology (RSM) was used for the experimental design. The results showed that an addition rate of 650 grams of recycled ABS plastic and a screw speed of 100 revolutions per minute in the extrusion process resulted in an average ultimate tensile strength of 33.334 megapascals, representing a 14.91 percent decrease, and an average elongation of 3.012 percent, representing a 10.89 percent decrease. The produced filament exhibited a consistent diameter of 1.75 ± 0.15 millimeters when compared to the new material. When tested with a printer using a dual-gear extruder system with an attached injection head, it was found that workpieces made from recycled ABS filament had inferior surface quality, shape, and appearance compared to those made from new ABS filament. However, using recycled materials can reduce plastic pellet consumption by up to 34.41 percent (saving 55.75 THB per kilogram) and significantly reduce carbon dioxide emissions by 61.94 percent (1.1799 kg CO2e) compared to virgin ABS pellets, highlighting its economic and environmental benefits.
Keywords
[1] A. K. Mohanty, M. Misra, and L. T. Drzal, “Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world,” Journal of Polymers and the Environment, vol. 10, no. 1/2, pp. 19–26, 2002.
[2] A. Wattanakornsiri, K. Pachana, S. Kaewpirom, M. Traina, and C. Migliaresi, “Preparation and properties of green composites based on tapioca starch and differently recycled paper cellulose fibers,” Journal of Polymers and the Environment, vol. 20, pp. 801–809, 2012.
[3] A. Bismarck, A. Baltazar–y–Jimenez, and K. Sarikakis, “Green composites as panacea? socio–economic aspects of green materials,” Environment, Development and Sustainability, vol. 8, pp. 445–463, 2006.
[4] D. Fico, D. Rizzo, R. Casciaro, and C. E. Corcione, “A review of polymer-based materials for Fused Filament Fabrication (FFF): Focus on sustainability and recycled materials,” Polymers, vol. 14, no. 3, pp. 465, Jan. 2022.
[5] C. Burkhardt, P. Freigassner, O. Weber, P. Imgrund, and S. Hampel, “Fused Filament Fabrication (FFF) of 316L green parts for the MIM process,” in Proceedings World PM2016 - AM - Deposition Technologies, Hamburg, Germany, 2021.
[6] S. B. Borrelle, J. Ringma, K. L. Law, C. C. Monnahan, L. Lebreton, A. McGivern, E. Murphy, J. Jambeck, G. H. Leonard, M. A. Hilleary, M. Eriksen, H. P. Possingham, H. D. Frond, L. R. Gerber, B. Polidoro, A. Tahir, M. Bernard, N. Mallos, M. Barnes, and C. M. Rochman, “Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution,” Science, vol. 369, no. 6510, pp. 1515–1518, 2020.
[7] I. Canete Vela, T. Berdugo Vilches, G. Berndes, F. Johnsson, and H. Thunman, “Co–recycling of natural and synthetic carbon materials for a sustainable circular economy,” Journal of Cleaner Production, vol. 365, pp. 132674, 2022.
[8] J. Lim, Y. Ahn, and J. Kim, “Optimal sorting and recycling of plastic waste as a renewable energy resource considering economic feasibility and environmental pollution,” Process Safety and Environmental Protection, vol. 169, pp. 685–696, 2023.
[9] I. Canete Vela, J. Maric, J. González–Arias, and M. Seemann, “Feedstock recycling of cable plastic residue via steam cracking on an industrial–scale fluidized bed,” Fuel, vol. 355, pp. 129518, 2024.
[10] W. Yu, M. Li, W. Lei, and Y. Chen, “FDM 3D printing and properties of PBAT/PLA blends,” Polymers, vol. 16, no. 1140, pp. 1–15, 2024.
[11] F. Laoutid, S. Lafqir, A. Toncheva, and P. Dubois, “Valorization of recycled tire rubber for 3D printing of ABS– and TPO–based composites,” Materials, vol. 14, no. 5889, pp. 1–17, 2021.
[12] O. K. Gohatre, M. Biswal, S. Mohanty, and S. K. Nayak, “An effective sustainable approach towards recycling and value addition of waste poly (vinyl chloride) and acrylonitrile butadiene styrene (ABS) recovered from electronic waste (e–waste),” Journal of Polymer Research, vol. 28, no. 328, pp. 1–16, 2021.
[13] W. Seok, E. Jeon, and Y. Kim, “Effects of annealing for strength enhancement of FDM 3D–printed ABS reinforced with recycled carbon fiber,” Polymers, vol. 15, no. 3110, pp. 1–20, 2023.
[14] E. Kuram, G. Timur, B. Ozcelik, and F. Yilmaz, “Influences of injection conditions on strength properties of recycled and virgin PBT/PC/ ABS,” Materials and Manufacturing Processes, vol. 29, no. 12, pp. 1260–1268, 2014.
[15] T. T. Do, V.–T. Nguyen, H. D. Song Toan, P. S. Minh, T. M. T. Uyen, T. H. Huynh, V. T. Nguyen, and V. T. T. Nguyen, “Influences of TPU content on the weld line characteristics of PP and ABS blends,” Polymers, vol. 15, no. 2321, pp. 1–14, 2023.
[16] B. Qiao, G. Hu, M. He, and Y. Li, “Reactive compa tibility of recycled HIPS and ABS blends with maleic anhydride grafted styrene– ethylene– butadiene–styrene and oxazoline– modified recycled ABS,” Oxidation Communications, vol. 39, no. 2A, pp. 2085– 2100, 2016.
[17] V. Kumar, R. Singh, and I. P. S. Ahuja, “On mechanical and thermal properties of cryo– milled primary recycled ABS,” Sadhana, vol. 45, no. 80, pp. 1–13, 2020.
[18] M. Hassanien, M. Alkhader, B. A. Abu–Nabah, and W. Abuzaid, “A low–cost process for fabricating reinforced 3D printing thermoplastic filaments,” Polymers, vol. 15, no. 315, 2023.
[19] M. Tanase, A. I. Portoaca, A. Dinita, G. Branoiu, F. Zamfir, E.–E. Sirbu, and C. Calin, “Optimizing mechanical properties of recycled 3D–printed PLA parts for sustainable packaging solutions using experimental analysis and machine learning,” Polymers, vol. 16, no. 3268, pp. 1–35, Nov. 2024.
[20] M. Rahimi, M. Esfahanian, and M. Moradi, “Effect of reprocessing on shrinkage and mechanical properties of ABS and investigating the proper blend of virgin and recycled ABS in injection molding,” Journal of Materials Processing Technology, vol. 214, no. 12, pp. 2359–2365, 2014.
[21] M. Waseem, B. Salah, T. Habib, W. Saleem, M. Abas, R. Khan, U. Ghani, and M. U. R. Siddiqi, “Multi–response optimization of tensile creep behavior of PLA 3D printed parts using categorical response surface methodology,” Polymers, vol. 12, no. 2962, pp. 1–17, 2020.
[22] A. Boondaeng, J. Keabpimai, P. Srichola, P. Vaitha nomsat, C. Trakunjae, and N. Niyomvong, “Optimization of textile waste blends of cotton and PET by enzymatic hydrolysis with reusable chemical pretreatment,” Polymers, vol. 15, no. 1964, pp. 1–15, Apr. 2023.
[23] A. A. Khalid, A. M. Gora, A. D. Rafindadi, S. I. Haruna, and Y. E. Ibrahim, “Response surface methodology approach for the prediction and optimization of the mechanical properties of sustainable laterized concrete incorporating eco–friendly calcium carbide waste,” Infrastructures, vol. 9, no. 206, pp. 1–20, 2024.
[24] A. I. Andres, M. J. Petron, A. M. Lopez, and M. L. Timon, “Optimization of extraction conditions to improve phenolic content and in vitro antioxi dant activity in craft brewers’ spent grain using response surface methodology (RSM),” Foods, vol. 9, no. 1398, pp. 1–13, 2020.
[25] S. M. Robles–Apodaca, R. I. Gonzalez–Vega, S. Ruiz–Cruz, M. I. Estrada-Alvarado, L. A. Cira– Chavez, E. Marquez–Rios, C. L. Del– Toro–Sanchez, J. d. J. Ornelas–Paz, G. M. Suarez–Jimenez, and V. M. Ocano–Higuera, “Optimization of extraction process for improving polyphenols and antioxidant activity from papaya seeds (Carica papaya L.) using response surface methodology,” Processes, vol. 12, no. 2729, pp. 1–24, 2024.
[26] W. Seok, E. Jeon, and Y. Kim, “Effects of annealing for strength enhancement of FDM 3D–printed ABS reinforced with recycled carbon fiber,” Polymers, vol. 15, no. 3110, 2023.
[27] C. Kneidinger, E. Wagner, M. Langauer, and G. Zitzenbacher, “Estimation of the shear viscosity of mixed–polymer materials for screw extrusion– based recycling process modeling,” Polymers, vol. 16, no. 1339, pp. 1–25, 2024.
[28] P. Kothavade, A. Kafi, C. Dekiwadia, V. Kumar, S. B. Sukumaran, K. Shanmuganathan, and S. Bateman, “Extrusion 3D printing of intrinsically fluorescent thermoplastic polyimide: Revealing an undisclosed potential,” Polymers, vol. 16, no. 2798, pp. 1–15, 2024.
[29] S. Singh and P. Hubert, “High–performance polymer blends: Manufacturing of polyetherimide (PEI)–polycarbonate (PC)–based filaments for 3D printing,” Polymers, vol. 16, no. 3384, pp. 1–25, 2024.
[30] M. N. Ahmad, M. R. Ishak, M. M. Taha, F. Mustapha, Z. Leman, D. D. A. Lukista, Irianto, and I. Ghazali, “Application of taguchi method to optimize the parameter of Fused Deposition Modeling (FDM) using oil palm fiber reinforced thermo plastic composites,” Polymers, vol. 14, no. 2140, pp. 1–15, 2022.
[31] Z. Liu, Q. Lei, and S. Xing, “Mechanical characte ristics of wood, ceramic, metal and carbon fiber– based PLA composites fabricated by FDM,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 3741–3751, 2019.
[32] J. Januteniene, M. Vasylius, A. Tadzijevas, V. Karta sovas, D. Sapalas, and S. Grigaliuniene, “Influence of recycling and UV exposure on the properties of 3D printing polymer materials,” Polymers, vol. 16, no. 3292, pp. 1–18, 2024.
[33] T. Appalsamy, S. L. Hamilton, and M. J. Kgaphola, “Tensile test analysis of 3D printed specimens with varying print orientation and infill density,” Journal of Composites Science, vol. 8, no. 121, pp. 1–15, 2024.
[34] ASTM International, “D638-22: Standard Test Method for Tensile Properties of Plastics,” ASTM Standards, 2022.
[35] N. A. Patil, K. Joshi, J. Lee, K. E. Strawhecker, R. Dunn, T. Lawton, E. D. Wetzel, and J. H. Park, “Additive manufacturing of thermoplastic elastomer structures using dual material core–shell filaments,” Additive Manufacturing, vol. 82, pp. 104044, 2024.
[36] T. Kurose, Y. Abe, M. V. A. Santos, Y. Kanaya, A. Ishigami, S. Tanaka, and H. Ito, “Influence of the Layer Directions on the Properties of 316L Stainless Steel Parts Fabricated through Fused Deposition of Metals,” Materials, vol. 13, no. 2493, pp. 1–12, 2020.
[37] A. Yankin, Y. Alipov, A. Temirgali, G. Serik, S. Dane nova, D. Talamona, and A. Perveen, “Optimization of printing parameters to enhance tensile properties of ABS and nylon produced by fused filament fabrication,” Polymers, vol. 15, no. 3043, pp. 1–15, 2023.
[38] M. A. Z. Aris, S. Mat, M. S. Sam, F. R. Ramli, M. R. Alkahari, and S. I. A. Kudus, “Design and development of 3D printer filament extruder,” Proceedings of Mechanical Engineering Research Day 2020, pp. 293–294, 2020.
[39] M. N. Ahmad, M. R. Ishak, M. M. Taha, F. Mustapha, and Z. Leman, “A review of natural fiber–based filaments for 3D printing: Filament fabrication and characterization,” Materials, vol. 16, no. 11, pp. 4052, 2023.
[40] Z. A. S. Nafis, M. Nuzaimah, S. I. Abdul Kudus, Y. Yusuf, R. A. Ilyas, V. F. Knight, and M. N. F. Norrrahim, “Effect of wood dust fibre treatments reinforcement on the properties of recycled polypropylene composite (r–WoPPC) filament for fused deposition modelling (FDM),” Materials, vol. 16, no. 2, pp. 479, 2023.
[41] Creative Tools. 3DBenchy: A 3D model designed for testing and benchmarking 3D printers. [Online]. Available: https://3DBenchy.com.
[42] S. Juneja, J. S. Chohan, R. Kumar, S. Sharma, R. A. Ilyas, M. R. M. Asyraf, and M. R. Razman, “Impact of process variables of acetone vapor jet drilling on surface roughness and circularity of 3D– printed abs parts: Fabrication and studies on thermal, morphological, and chemical characterizations,” Polymers, vol. 14, no. 1367, pp. 1–28, 2022.
[43] A. Garg, A. Bhattacharya, and A. Batish, “Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength,” International Journal of Advanced Manufacturing Technology, vol. 89, pp. 2175–2191, 2017.
[44] A. Mathew, S. R. Kishore, A. T. Tomy, M. Suga vaneswaran, S. G. Scholz, A. Elkaseer, V. H. Wilson, and A. J. Rajan, “Vapour polishing of fused deposition modelling (FDM) parts: A critical review of different techniques, and subsequent surface finish and mechanical properties of the post–processed 3D–printed parts,” Progress in Additive Manufacturing, vol. 8, pp. 1161–1178, 2023.
[45] F. B. Jiménez Aguilar, J. Varela-Soriano, A. Medina– Castro, S. G. Torres-Cedillo, J. Cortes-Perez, and M. Jimenez-Martinez, “Post-fabrication treatment process for ABS printed parts using acetone vapor,” Progress in Additive Manufacturing, vol. 10, pp. 1561–1574, 2025.
[46] A. A. Demircali, D. Yilmaz, A. Yilmaz, O. Keskin, M. Keshavarz, and H. Uvet, “Enhancing mechanical properties and surface quality of FDM–printed ABS: A comprehensive study on cold acetone vapor treatment,” The International Journal of Advanced Manufacturing Technology, vol. 130, pp. 4027–4039, 2024.
[47] P. Hongthong and A. Maneeratphairoj, “Develo pment of Surface Improvement Oven for 3D Printing from ABS Material,” Bachelor's Thesis, Department of Industrial Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand, 2019.
[48] J. Tinz, T. de Ancos, and H. Rohn, “Carbon footprint of mechanical recycling of post– industrial plastic waste: Study of ABS, PA66GF30, PC and POM regrinds,” Waste, vol. 1, pp. 127– 139, 2023.
[49] M. Elbadawi, A. W. Basit, and S. Gaisford, “Energy consumption and carbon footprint of 3D printing in pharmaceutical manufacture,” International Journal of Pharmaceutics, vol. 639, pp. 122926, 2023.
[50] M. E. Hernandez, J. A. Albajez, M. P. Lamban, J. Royo, J. Santolaria, and L. C. Ng Corrales, “Fused deposition modelling process environmental performance through the carbon footprint evaluation,” IOP Conference Series: Materials Science and Engineering, vol. 1193, pp. 012127, 2021.
DOI: 10.14416/j.kmutnb.2025.06.001
ISSN: 2985-2145